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あらまし 畳み込み混合過程におけるフィードフォワード (FF-)形ブラインドソースセパレーション (BSS)では自由

度が存在するため信号歪みが生じる．我々は，信号源－センサーが 2チャンネルの場合において，完全分離と信号無

歪みの条件を制約条件として課す信号歪み抑制学習アルゴリズムを時間領域，周波数領域の FF-BSSに対して提案し

てきた．本稿では，信号歪み抑制の制約条件を多チャンネルに拡張し，かつ，計算の複雑さを軽減するために制約条

件を近似する方式を提案する．音声を用いたコンピュータシミュレーションによってその近似制約方式と厳密制約方

式がほぼ同等の分離性能と信号歪み抑制が得られることを確認した．また，3チャンネルにおいても，従来方式より

特性が改善されることを確認した．
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Abstract Feed-forward Blind Source Separation (FF-BSS) systems have some degree of freedom in the solution

space, and signal distortion is likely to occur in convolutive mixtures. Previously, a condition for complete sepa-

ration and distortion free has been derived for 2-channel FF-BSS. This condition has been applied to the learning

algorithms as a distortion free constraint in both the time and frequency domains. In this paper, the condition is

further extended to multiple channel FF-BSSs. This condition requires the a high computational complexity to be

applied to the learning process as a constraint. An approximate constraint is proposed in order to relax the high

computational load. In comparison with the original constraint, computer simulations have demonstrated that the

approximation can obtain similar performances with respect to source separation as well as signal distortion using

speech signals. Furthermore, the performances can be improved compared to the conventionals for three channels.

Key words Blind source separation, Signal distortion, Convergence, Learning algorithm, Convolutive

1 Introduction

Signal processing, including noise cancellation, echo can-

cellation, equalization of transmission lines, estimation and

restoration of signals has become a very important research

area. However, often information with respect to the sig-

nals itself and their interference is insufficient. Furthermore,

their mixing and transmission processes are not well known

in advance. In these kinds of situations, blind source sepa-

ration (BSS) technology using statistical properties of signal

sources have become very important [1]- [3].

In many applications, mixing processes are convolutive

mixtures. Therefore, separation processes require convo-

lutive models. Various methods for separating sources in
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図 1 BSS system with 2 signal sources and 2 sensors.

the time domain and the frequency domain have been pro-

posed. Their separation performance is highly dependent

on the signal sources and the transfer functions in the mix-

ture [5], [6], [10].

BSS learning algorithms make the output signals statis-

tically independent. However, this approach cannot always

guarantee distortion free separation. A method for suppress-

ing signal distortion in which the distance between the ob-

served signals and the separated signals is added to the cost

function has been proposed [7]. However, since the observa-

tions may consist of many signal sources, by applying this

method, separation itself becomes very difficult. To begin

with, even though signal distortion in BSS systems is an

important problem, it has not been well addressed until re-

cently. Previously, an evaluation measure of signal distortion

has been discussed, and conditions for source separation as

well as distortion free have been derived. Taking these con-

ditions in consideration, convergence properties have been

analyzed. Furthermore, a new learning algorithm with a

constraint based on these conditions for two channels has

been proposed [13].

In this paper, the distortion free constraint is extended to

more than two channels. Moreover, since the calculation is

computationally expensive, an approximation is proposed.

2 BSS Systems for Convolutive Mixture

2. 1 Network Structure and Equations

A block diagram of a BSS system (2 signal sources and 2

sensors) is shown in Fig.1. The mixing stage has a convolu-

tive structure. The blocks Wkj(z) consist of an FIR filter.

The observations x(n) and the output signals y(n) are given

by:

x(n) =

Kh−1
∑

l=0

h(l)s(n − l) (1)

y(n) =

Kw−1
∑

l=0

w(n, l)x(n − l) (2)

s(n) = [s1(n), · · · , sN (n)]T (3)

x(n) = [x1(n), · · · , xN (n)]T (4)

y(n) = [y1(n), · · · , yN (n)]T (5)

h(l) =









h11(l) · · · h1N (l)

...
. . .

...

hN1(l) · · · hNN (l)









(6)

w(n, l) =









w11(n, l) · · · w1N (n, l)

...
. . .

...

wN1(n, l) · · · wNN (n, l)









(7)

where s(n) is a signal source, h(l) is a mixing system and

w(n, l) is a separation system. In the z-domain, the above

equations can be expressed by:

X(z) = H(z)S(z) (8)

Y (z) = W (z)X(z) (9)

The relation between the signal sources and the outputs is

defined by:

Y (z) = W (z)H(z)S(z) = A(z)S(z) (10)

2. 2 Learning Algorithm in Time Domain

Previously, a learning algorithm for separating sources

based on a natural gradient method using mutual informa-

tion as a cost function has been proposed [4]. This learning

algorithm in the time domain is can be given by:

w(n + 1, l) = w(n, l) + η

Kw−1
∑

q=0

[Iδ(n − q)

−〈Φ(y(n))yT (n − l + q)〉]w(n, q) (11)

Φ(y(n)) = [Φ(y1(n)), · · · , Φ(yN (n))]T (12)

Φ(yk(n)) =
1 − e−yk(n)

1 + e−yk(n)
(13)

The learning rate is represented by η. <> is an averaging

operation. δ(n) is Dirac’s delta function, where δ(0) = 1 and

δ(n) = 0 (n |= 0).

2. 3 Learning Algorithm in Frequency Domain

The same learning algorithm in the frequency domain us-

ing FFT, is defined as [4], [8], [9]:

W (r + 1, m) = W (r,m) + η[diag(〈Φ(Y (r,m))Y H(r,m)〉)

−〈Φ(Y (r, m))Y H(r, m)〉]W (r,m) (14)

Φ(Y (r, m)) = [Φ(Y1(r, m)), · · · , Φ(YN (r, m))]T (15)

Φ(Yk(r, m)) =
1

1 + e−Y R
k

(r,m)
+

j

1 + e−Y I
k

(r,m)
(16)

The parameter r is the block number used in the FFT, and

m indicates the frequency point within each block. W (r,m)

is the weight matrix of the r-th FFT block and the m-th fre-

quency point. Y (r,m) is the output of the r-th FFT block

and the m-th frequency point. The function diag(·) is the

diagonal matrix of ·. Y R
k (r, m) and Y I

k (r, m) represent the

real part and the imaginary part, respectively.
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3 Criterion for Signal Distortion

In this paper, the signals Hii(z)Si(z) or Hji(z)Si(z) (j |= i)

are taken into account as a criterion for signal distortion [2],

[11]. These signals are unmixed, i.e. they follow a single

path from the original sources to the sensors and resemble

the original situation closest. In other words, only signal

distortion caused by the BSS systems itself is considered.

Signal distortion can also be evaluated through the trans-

fer functions, i.e. the transfer function from the i-th source

to the k-th output Aki(z) is compared to the one from the

i-th source to the j-th sensor Hji(z). Furthermore, signal

distortion can be evaluation in two different ways, i.e. the

amplitude responses including the phase and amplitude re-

sponses excluding the phase with respect to the signals and

transfer functions. As a result, four kinds of measures

(SDix i = 1, 2 x = a, b), as shown below, are applied:

SD1x = 10 log10

σd1x

σ1
, x = a, b (17)

SD2x = 10 log10

σd2x

σ2
, x = a, b (18)

σd1a =
1

2π

∫ π

−π

|Hji(e
jω)Si(e

jω)

− Aki(e
jω)Si(e

jω)|2dω (19)

σd1b =
1

2π

∫ π

−π

(|Hji(e
jω)Si(e

jω)|

− |Aki(e
jω)Si(e

jω)|)2dω (20)

σ1 =
1

2π

∫ π

−π

|Hji(e
jω)Si(e

jω)|2dω (21)

σd2a =
1

2π

∫ π

−π

|Hji(e
jω) − Aki(e

jω)|2dω (22)

σd2b =
1

2π

∫ π

−π

(|Hji(e
jω)| − |Aki(e

jω)|)2dω (23)

σ2 =
1

2π

∫ π

−π

|Hji(e
jω)|2dω (24)

Since the BSS systems are unable to control the output signal

level, the output signal level might differ from the criteria. In

order to neglect this scaling effect in the calculation of SD1x

and SD2x, the average powers of Hji(z)Si(z), Aki(z)Si(z),

Hji(z), and Aki(z) are normalized.

Smaller values for the evaluations SDix i = 1, 2 x = a, b

indicate better performances with respect to signal distor-

tion.

4 Source Separation and Signal Distor-

tion

4. 1 Source Separation and Signal Distortion

For simplicity, a BSS system with 2-sources and 2-sensors,

as shown in Fig.1, is used. Furthermore, the sources Si(z)

are assumed to be separated at the outputs Yi(z). This does

not lose generality. Considering, the criterion of signal dis-

tortion as defined in Sec. 3, the condition for distortion free

source separation can be expressed as follows:

W11(z)H11(z) + W12(z)H21(z) = H11(z) (25)

W11(z)H12(z) + W12(z)H22(z) = 0 (26)

W21(z)H11(z) + W22(z)H21(z) = 0 (27)

W21(z)H12(z) + W22(z)H22(z) = H22(z) (28)

The conditions for complete source separation are ex-

pressed by Eqs. (26) and (27). These equations imply that all

non-diagonal elements of A(z) are zero. The conditions for

distortion free are expressed by Eqs. (25) and (28). These

equations imply that the diagonal elements of A(z) equal

Hii(z).

The conventional learning algorithm given by Eqs. (11)-

(14) satisfies only Eqs. (26) and (27). Equations (25) and

(28) are not guaranteed to be satisfied. Therefore, by apply-

ing this algorithm, signal distortion may occur.

4. 2 Distortion Free Condition and Its Application

to Learning Algorithm

Equations (26) and (27) are rewritten, expressing Hji(z)

as follows:

Hji(z) = −
Wji(z)

Wjj(z)
Hii(z) (29)

By substituting the above equations into Eqs. (25) and (28),

Hji(z) can be removed, and the following equations consist-

ing only of Wkj(z) can be obtained:

Wjj
2(z) − Wjj(z) − Wjk(z)Wkj(z) = 0 (30)

j = 1, 2, k = 1, 2, j |= k

This 2nd-order equation expresses the condition for both

complete source separation and distortion free. This equa-

tion is solved for Wjj(z) as follows:

Wjj(z) =
1 ±

√

1 + 4W12(z)W21(z)

2
, j = 1, 2 (31)

This condition can be included in the learning processes for

BSS systems in the time domain as well as trained in the

frequency domain as a distortion free constraint. In this

method, W12(z) and W21(z) are still being calculated as in

the conventional methods, following Eq. (11) and (14). How-

ever, by using W12(z) and W21(z), Wjj(z) are obtained so as

to satisfy Eq. (30) i.e. from Eq. (31).

It should be noted, that in the early stage of the learning

process, the signal sources are not well separated, because

the separation block starts from an initial guess. Taking this

situation into account, the constraint of Eq. (31) is gradually

imposed as the learning process makes progress.
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The learning algorithm with the distortion free constraint

trained in time domain is given by:

wjk(n + 1, l) = w̃jk(n + 1, l) (j |= k) (32)

wjj(n + 1, l) = (1 − α)w̃jj(n + 1, l) + αw̄jj(n, l) (33)

(0 < α <= 1)

where w̃jk(n + 1, l) are the separation system updated

by Eqs. (11)-(13) following the conventional method, and

w̄jj(n, l) is determined by Eq. (30).

The learning algorithm with the distortion free constraint

trained in frequency domain is given by:

Wjk(r + 1, m) = W̃jk(r + 1, m) (j |= k) (34)

Wjj(r + 1, m) = (1 − α)W̃jj(r + 1, m)

+ α
1 +

√

1 + 4W12(r,m)W21(r, m)

2
(35)

(0 < α <= 1)

where W̃jk(r + 1, m) are the separation systems updated by

Eq. (14).

4. 3 Learning Algorithm in Time Domain Sup-

pressing Signal Distortion by Using Observa-

tions as Criteria

Previously, a learning algorithm for reducing signal distor-

tion has been proposed [7]. The cost function as defined in

Sec. 2. 2 has been extended by including the distance between

the observed signals and the output signals. Therefore, the

output signals are forced to approach to the observed sig-

nals. The resulting update equation for the filter coefficients

is given by:

w(n + 1, l) = w(n, l)

+ η

Kw−1
∑

q=0

[Iδ(n − q) − 〈Φ(y(n))yT (n − l + q)〉

− µ(y(n) − x(n))yT (n − l + q)]w(n, q) (36)

In this method, the output signals Yi(z) = Aii(z)Si(z) +

Aij(z)Sj(z) are stimulated to approach to the observed sig-

nals Xi(z) = Hii(z)Si(z) + Hij(z)Sj(z). Since it is assumed

that Si(z) and Sj(z) are statistically independent, Aii(z) and

Aij(z) are able to approach to Hii(z) and Hij(z), respec-

tively. According to our discussion from Sec. 4. 1, if Aii(z)

approaches Hii(z), then distortion free is guaranteed. Fur-

thermore, in the same section, it was also concluded that

the non-diagonal elements of A(z) should be equal to zero

in order to satisfy source separation. However, here Aij(z)

tends to approach to Hij(z). Therefore, this algorithm might

achieve low signal distortion, but perform poor with respect

to signal source separation due to these residual cross terms.

5 Generalization of Proposed Constraint

The constraint described in Sec. 4. 2 is extended to more

than two channels. The condition for distortion free source

separation can be expressed as follows:

W (z)H(z) = Λ(z) (37)

Λ(z) = diag[H(z)] (38)

Let Γ(z)) be a matrix having the non-diagonal elements of

H(z).

Γ(z) = H(z) − Λ(z) (39)

It satisfies:

W (z)(Λ(z) + Γ(z)) = Λ(z) (40)

Furthermore,

Γ(z) = W
−1(z)(I − W (z))Λ(z) (41)

= (W−1(z) − I)Λ(z) (42)

From Eq. (39):

diag[Γ(z)] = diag[(W −1(z) − I)Λ(z)] = 0 (43)

Since Λ(z) is the diagonal matrix, the above equation can

be rewritten:

diag[(W−1(z) − I)] = 0 (44)

This condition is equivalent that diagonal elements of

W−1(z) are 1. The inverse matrix is generally expressed

by:

W
−1(z) =

adj W (z)

det W (z)
(45)

adj W (z) is the adjugate matrix of W (z), and de-

noted Ŵ (z). Since, a diagonal element of W −1(z) =

Ŵ (z)/ detW (z), then:

Ŵ (z)

detW (z)
= 1 (46)

detW (z) is further expressed by:

detW (z) =

N
∑

j=1

Wij(z)(−1)i+j detM ij(z) (47)

M ij(z) is an (N − 1)× (N − 1) minor matrix. Ŵ (z) is also:

Ŵ (z) = (−1)2i det M ij(z) = detM ij(z) (48)

From Eqs.(46), (47) and (47), we obtain:

detM ij(z) =

N
∑

j=1

Wij(z)(−1)i+j det M ij(z) (49)

In this equation, Wii(z) is extracted:

detM ii(z)(1 − Wii(z)) =

N
∑

j=1

|=i

Wij(z)(−1)i+j detM ij(z) (50)
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The right hand side is further rewritten by:

−w
T
ix(z) adj M ij(z)wxi(z) (51)

where wxi(z) and wix(z) are:

wxi(z) = [W1i(z), · · · , Wyi(z), · · · , WNi(z)]T (52)

wix(z) = [Wi1(z), · · · , Wiy(z), · · · , WiN (z)]T (53)

and y |= i. Finally,

Wjj(z) = 1 + w
T
ix(z)

adj[M ij(z)]

det[M ij(z)]
wxi(z) (54)

= 1 + w
T
ix(z)M−1

ii (z)wxi(z) (55)

Equation (55) is not an explicit solution, because M−1
jj (z) in-

cludes Wkk(z) (j |= k). However, it can be expected that the

update changes of Wkk(z) are very little, because usually a

small learning rate is applied. Therefore, in order to ensure

high distortion free source separation regarding more than

two channels, Eq. (55) can be used by treating the Wkk(z)

from M−1
jj (z) as constants.

The learning algorithm with the distortion free constraint

trained in frequency domain is given by:

Wjk(r + 1, m) = W̃jk(r + 1, m) (j |= k) (56)

Wjj(r + 1, m) = (1 − α)W̃jj(r + 1, m) + αW̄jj(r, m) (57)

(0 < α <= 1)

where W̃jk(r + 1, m) are the separation systems updated by

Eq. (14) and W̄jj(r,m) is determined by Eq. (55).

Regarding the learning algorithm trained in time domain,

since it is difficult to calculate Eq. (55) in the time domain,

the constraint is calculated in the frequency domain using the

separation system which transforms wjk(n, l) into frequency

domain.

wjk(n + 1, l) = w̃jk(n + 1, l) (j |= k) (58)

wjj(n + 1, l) = (1 − α)w̃jj(n + 1, l) + αw̄jj(n, l) (59)

(0 < α <= 1)

where w̃jk(n + 1, l) are the separation system updated

by Eqs. (11)-(13) following the conventional method, and

w̄jj(n, l) is Eq. (55) calculated in frequency domain.

6 Simulations and Discussion

6. 1 Learning Methods and Their Abbreviations

In this paper, many kinds of learning methods will be com-

pared. They are summarized in Table 1.

6. 2 Simulation Conditions

Simulations are performed for the following two cases:

（ 1） Two sources and two sensors.

（ 2） Three sources and three sensors.

表 1 Abbreviations of the applied learning algorithms.

TIME Eqs. (11)-(13) [4]

TIME (DF)
Eqs. (11)-(13) with the distortion free con-

straint Eqs. (32),(33)

TIME (ADF)
Eqs. (11)-(13) with the distortion free con-

straint applying Eqs. (58),(59)

TIME (MDP) Eq. (36) [7]

FREQ Eqs. (15)-(14) [9]

FREQ (DF)
Eqs. (15)-(14) with the distortion free con-

straint Eqs. (34),(35)

FREQ (ADF)
Eqs. (15)-(14) with the distortion free con-

straint applying Eqs. (56),(57)

表 2 Comparison among seven kinds of BSS systems for speech

signals in the case 1.

Methods SIR1 SIR2 SD1a SD1b SD2a SD2b

TIME 12.2 5.56 0.25 -2.94 0.57 -3.82

TIME (DF) 8.33 4.33 -12.1 -16.2 -15.4 -19.9

TIME (ADF) 8.31 4.33 -12.5 -16.7 -15.4 -19.8

TIME (MDP) 3.98 2.90 -10.3 -13.6 -8.24 -12.3

FREQ 18.8 10.5 -10.9 -16.5 -11.9 -15.0

FREQ (DF) 18.7 10.1 -25.8 -30.0 -18.4 -21.1

FREQ (ADF) 18.7 10.1 -25.8 -30.0 -18.4 -21.2

Mixture systems simulating actual acoustic spaces are ap-

plied. Speeches are used as sources. The FFT size is set to

256 points for training in the frequency domain. FIR filters

with 256 taps are used for training in the time domain. The

initial guess for the separation blocks are Wjj(z) = 1 and

Wkj(z) = 0, k |= j.

Source separation is evaluated by the following two signal-

to-interference ratios SIR1 and SIR2. Here, the sources

Si(z) are assumed to be separated at the outputs Yi(z). How-

ever, this does not lose generality.

σs1 =
1

2π

∫ π

−π

N
∑

i=1

|Aii(e
jω)Si(e

jω)|2dω (60)

σi1 =
1

2π

∫ π

−π

N
∑

k=1

N
∑

i=1

|=k

|Aki(e
jω)Si(e

jω)|2dω (61)

SIR1 = 10 log10

σs1

σi1
(62)

σs2 =
1

2π

∫ π

−π

N
∑

i=1

|Aii(e
jω)|2dω (63)

σi2 =
1

2π

∫ π

−π

N
∑

k=1

N
∑

i=1

|=k

|Aki(e
jω)|2dω (64)

SIR2 = 10 log10

σs2

σi2
(65)

Larger values for the evaluations SIRi (i = 1, 2) indicate

better performances with respect to source separation.

6. 3 Performance in Case 1

Evaluation measures in case 1 are summarized in Table 2.
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表 3 Comparison among seven kinds of BSS systems for speech

signals in the case 2.

Methods SIR1 SIR2 SD1a SD1b SD2a SD2b

TIME -1.07 5.98 0.54 -2.46 -0.77 -4.71

TIME (ADF) 5.44 4.54 -14.0 -18.2 -17.4 -20.8

TIME (MDP) 4.17 3.99 -8.56 -11.9 -10.5 -14.3

FREQ 17.0 9.58 -14.1 -21.1 -14.6 -17.2

FREQ (ADF) 17.1 9.12 -26.7 -34.7 -19.9 -21.7

We have set i = j = k in Eqs. (17)-(24) with respect to the

signal distortion evaluations, because S1(z) and S2(z) are

assumed to be separated at Y1(z) and Y2(z), respectively.

The conventional learning algorithm TIME performs worst

regarding the signal distortion measures SDix. TIME

(MDP) can improve signal distortion. However, as discussed

in Sec. 4. 3, due to the residual cross terms, the signal to

interference ratios SIRi are unsatisfactory. TIME (DF) can

improve SDix as well as SIRi. Compared to TIME, the

evaluation values for SIRi are slightly lower. However, in

TIME, signal distortion is caused by the amplification of high

frequency bands in an attempt to make the signal sources

statistically independent. Consequently, this amplification

contributes to higher, but somewhat blurred SIRi values.

FREQ is better than the time domain implementations

regarding source separation. Regarding signal distortion,

FREQ is slightly worse than the learning algorithm trained in

the time domain incorporating a distortion free constraints.

On the other hand, by using the proposed distortion free con-

straint, FREQ (DF) can drastically improve from FREQ re-

garding signal distortion, while maintaining high signal sep-

aration performances.

The learning algorithms applying the distortion free con-

straint following the approximation, i.e. TIME (ADF) and

FREQ (ADF), are able to obtain the same performances

regarding source separation as well as signal distortion as

their counterparts. TIME (ADF) and FREQ (ADF) apply

an approximation method for calculating the distoriton free

constraint by treating the Wkk(z) in M−1
jj (z) from Eq. (55)

as constants. The simulation results demonstrate that the

approximation can be applied succesfully.

6. 4 Performance in Case 2

Evaluation measures in case 2 are summarized in Table 3.

In the time domain implementation, TIME(ADF) is the

best regarding both signal separation and signal distortion.

TIME(MDP) is inferior to the proposed, its signal distortion

is larger than TIME(ADF) by about 6dB. In the case of the

frequency domain, the proposed approach FREQ(ADF) still

can reduce signal distortion from the conventional method,

while maintaining almost the same separation performances.

From these results, it can be concluded that the approxi-

mated constraint is useful for multi-channel FF-BSS systems.

7 Conclusion

The constraint proposed for 2-channel FF-BSS systems, is

extended to multiple channel FF-BSS systems. Furthermore,

This constraint is approximated in order to relax the com-

putational load. In comparison with the original constraint,

computer simulations have demonstrated that the approx-

imation can obtain a similar performance with respect to

source separation as well as signal distortion using speech

signals. Furthermore, good performances are also obtained

in situations using three channels.
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