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ABSTRACT
This paper introduces a recursive least squares (RLS) al-
gorithm into the alternative learning algorithm for stereo-
phonic acoustic echo canceller, which can identify correct
echo paths without pre-processing. Stabilization techniques
including a periodic reset and an adaptive forgetting factor
are also proposed. Computer simulation results show faster
convergence and improved echo return loss enhancement.

あ ら ま し

前処理なしで エコー パ スを 同定で き る 分割 学習法に 基 づ

く ステレ オエコー キャ ン セラ に お い て 、 フ ィ ル タ係数更
新に RLS ア ル ゴリ ズム を 使用す る 方法を 検討す る 。 学
習を 安 定化さ せ る た め に 、 周期 的な初期 化や 時変忘却
係数など の 係数更新制御を 導入す る 。 計算機 シミ ュ レ ー

ショ ン に よ っ て 、 収束速度が 改善さ れ て い る こ と 、 エ

コー 消去量が 増加す る こ と を 示す 。

1 Introduction
Echo cancellers are used to reduce echoes in a wide range
of applications, such as TV conference systems and hands-
free telephones. To realistic TV conferencing, multi-channel
audio, at least stereophonic, is essential. For stereophonic
teleconferencing, stereophonic acoustic echo cancellers
(SAEC’s) [1–5] have been studied.

SAEC’s have a fundamental problem in which their fil-
ter coefficients cannot have an unique solution [1]. Though
SAEC’s with pre-processing [2] are good candidates for
solving this problem, audible sound distortion caused by
the pre-processing arises. An SAEC without pre-processing
which can estimate correct echo path has also been pro-
posed [4]. While no sound distortion are introduced, its
convergence speed is not so fast compared with SAEC’s
with pre-processing.

This paper proposes a recursive least squares (RLS)
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Figure 1: Teleconferencing using SAEC

algorithm [6] and its stabilization for the alternative learn-
ing algorithm. Section 2 reviews the SAEC and its funda-
mental problem, followed by the alternative learning algo-
rithm. Introduction of the RLS algorithm and its stabiliza-
tion are shown in Section 4. Computer simulation results
show the performance of the proposed algorithm.

2 Stereophonic Acoustic Echo Can-
celler and Uniqueness Problem

Figure 1 shows a teleconferencing using an SAEC. This
echo canceller consists of four adaptive filters correspond-
ing to four echo paths from two loudspeakers to two micro-
phones. Each adaptive filter estimates the corresponding
echo path.

The far-end signal xi(n) in the i-th channel at time in-
dex n is generated from a talker speech s(n) by passing
room A impulse response gi from the talker to the i-th mi-
crophone. xi(n) passes an echo path hi,j from the i-th
loudspeaker to the j-th microphone and become an echo
dj(n). Similarly, adaptive filters wi,j(n) generates an echo
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replica yj(n). wi,j(n) is so updated as to reduce the resid-
ual echo ej(n)

SAEC’s have a fundamental problem in which their fil-
ter coefficients cannot have an unique solution [1]. SAEC’s
may have infinite number of solutions other than the opti-
mum solution wi,j(n) = hi,j .

3 Alternative Learning Algorithm
Analyses show that SAEC’s may have unique and optimum
solution when the number of taps NW for SAEC and the
impulse response length NA in room A satisfy NW < NA

[5, 7]. For echo cancellation performance, NB < NW

is preferable where NB is the impulse response length in
room B. Therefore, if NB < NW < NA, SAEC in room
B achieves both perfect echo cancellation and optimum so-
lution. Such a condition, however, cannot be satisfied for
SAEC’s in both room A and B.

In order to satisfy the uniqueness condition for both
SAEC’s in room A and room B, the number of taps for
SAEC NW is so chosen as to satisfy NW /2 < NA < NW

and NW /2 < NB < NW . If the size of both rooms are
similar, which is usual case, such NW may exist. In adap-
tation, NW /2 taps are updated at a time; thus the effective
number of taps for SAEC NW /2 is smaller than the im-
pulse response length in the far-end room NA. To avoid
the performance degradation caused by the tap shortage,
another NW /2 taps will also update at the other time.

The filter coefficient vector wi,j(n) is divided into two
sub-vectors wi,j,f (n) and wi,j,b(n) show by

wi,j,f (n) = [wi,j,0(n), · · · , wi,j,NW /2−1(n)]T (1)

wi,j,b(n) = [wi,j,NW /2(n), · · · , wi,j,NW −1(n)]T . (2)

The superscript T denotes the transpose of a matrix or a
vector. In the first stage, wi,j,f (n) is updated while wi,j,b(n)
is fixed. This stage is repeated until wi,j,f (n) converges.
As the second stage, wi,j,b(n) is updated while wi,j,f (n) is
fixed. This stage is also repeated until wi,j,b(n) converges.
These two stages are repeated one after another.

An adaptive step-size and a convergence detection are
introduced. An adaptive step-size and a convergence detec-
tion are introduced for fast convergence with a small com-
putational cost. The adaptive step-size and the convergence
detection are carried out based on the coefficient modifica-
tion amount defined by

D(m) =

∑2

i=1
‖wi,j,p(mK) − wi,j,p((m − 1)K)‖2

∑

2

i=1
‖wi,j,p(mK)‖2

(3)
where p is either f or b. To avoid the increase of the com-
putational cost, (3) is calculated once in a K iterations. Co-
efficient adaptation is stopped when (3) is calculated.

The filter coefficients are considered to be converged if
D(m− 1) < D(m) is satisfied. The step-size is controlled
by

µ(m) = µmax

(

D(m)

Dmax

)1/4

(4)

where Dmax is a maximum value of D(m) in a same stage.
Usually, D(1) is used as a Dmax. µ(n) is used within
mK < n < (m + 1)K.

The overview of the adaptation control is as follows:

1. Update filter coefficients with µ(0) = µmax for first
K iterations.

2. calculate D(1). Dmax = D(1).

3. Update filter coefficients with µ(m) by (4) for next
K iterations.

4. calculate D(m).

5. If D(m−1) < D(m), then proceed to the next stage.

6. If Dmax < D(m), then Dmax = D(m).

7. Goto 3.

4 RLS Algorithm and Its Stabiliza-
tion

The RLS algorithm is introduced in order to improve the
convergence characteristics. Some stabilization techniques
are also introduced.

By using combined input signal vectors

xf (n) = [x1(n), x2(n), · · · ,

x1(n − NW /2 + 1), x2(n − NW /2 + 1)]T (5)

xb(n) = [x1(n − NW /2), x2(n − NW /2), · · · ,

x1(n − NW + 1), x2(n − NW + 1)]T (6)

and also combined filter coefficient vectors

wj,f (n) = [w1,j,0(n), w2,j,0(n), · · · ,

w1,j,NW /2−1(n), w2,j,NW /2−1(n)]T (7)

wj,b(n) = [w1,j,NW /2(n), w2,j,NW /2(n), · · · ,

w1,j,N−1(n), w2,j,N−1(n)]T , (8)

the RLS algorithm can be applied to the alternative learning
algorithm. The RLS based adaptation for the alternative
learning algorithm is summarized as

yj(n) = xT
j,f (n)wj,f (n) + xT

j,b(n)wj,b(n) (9)

ej(n) = dj(n) − yj(n) (10)

kp(n) =
λ−1P p(n − 1)xp(n)

1 + λ−1xT
p (n)P p(n − 1)xp(n)

(11)

wp(n) = wp(n − 1) + kp(n)e(n) (12)

P p(n) = λ−1P p(n − 1) − λ−1kp(n)xT
p (n)P p(n − 1)

(13)
where the subscript p is either f or b. Either wj,f (n) or
wj,b(n) is updated.

For stable and fast convergence, the following tech-
niques are used in the adaptation.

19th SIP Symposium        10,11,12/11/2004 B1-4

2



-25

-20

-15

-10

-5

0

0 20000 40000 60000 80000 100000

N
or

m
al

iz
ed

 C
oe

ffi
ci

en
t E

rr
or

 [d
B

]

Iterations [sample]

Proposed

Standard/NLMS

Alternative/NLMS
Alternative/RLS

Figure 2: NCE in early stage.

• Periodic reset
Reset P p(n) to zero once in L1 samples. Such reset
avoids unstability.

• Freeze coefficients just after reset
Coefficient update in (12) is not carried out for L2

samples after the reset.

• Adaptive forgetting factor
Adaptive forgetting factor defined by

λ(m) = λ0 + (1 − λ0)

{

1 − (
D(m)

Dmax
)

}

(14)

is used, where D(m) is same as that in Section 3.
Dmax is a maximum value of D(m). λ(m) is up-
dated once in K samples.

• Convergence detection as in Section 3

5 Computer Simulations
Simulations have been carried out to show the performance
of the proposed algorithm. Far-end room impulse responses
gi are 60-tap FIR filters while those for near-end room hi,j

are 64-tap FIR filters. In this case, SAEC’s do not have
an unique solution. Adaptive filters are 64-tap FIR filters.
Colored noise by second-order AR model is used as a talker
signal. The pole locations are θ = ±45, r = 0.9. Additive
white Gaussian noise signal is introduced. The echo-to-
noise ratio is 60dB.

The proposed algorithm is compared with the standard
SAEC [1], the alternative learning algorithm [4], and the
input sliding algorithm [2]. The step-size µ for the standard
SAEC is 1.0. The parameters for the alternative algorithm
with NLMS are µ = 0.5, K = 5000. A smaller step-size
is used for stability reason. For the proposed algorithm,
L1 = 128, L2 = 2000, K = 6000, λ0 = 0.9999 are used.
The parameters for the input sliding algorithm are chosen
as µ = 1, Q = 60, and L = 6.
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Figure 3: NCE in latter stage.
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Figure 4: ERLE.

Figure 2 compares the normalized coefficient error (NCE)
defined by

NCE(n) =

∑

2

i=1
‖wi,j(n) − hi,j‖

2

∑2

i=1
‖hi,j‖2

. (15)

in early stage. Though the RLS algorithm without stabi-
lization (Alternative/RLS) converges fastest in early peri-
ods, impulsive increases of the NCE have been occurred.
Such increases are much smaller for the proposed algo-
rithm. The convergence time to -15dB of the NCE for the
proposed algorithm is almost 1/20 compared with the alter-
native learning algorithm with NLMS (Alternative/NLMS).

The NCE for latter stage is compared by Fig. 3. The al-
ternative learning algorithms achieve almost -20dB of the
NCE while that of the standard SAEC is -15dB. the pro-
posed algorithm reduces the NCE by 2dB compared with
that of Alternative/NLMS. The convergence time of the
proposed algorithm to -20dB of the NCE is reduced by al-
most 60% compared with Alternative/RLS.

The echo return loss enhancement (ERLE) is depicted
by Fig 4. Introduction of the RLS algorithm improves the
ERLE by almost 5dB.
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Figure 5: NCE compared with SAEC using pre-processing.
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Figure 6: NCE for white Gaussian inputs.

Figure 5 compares the NCE for the alternative learn-
ing algorithms with that for the input sliding algorithm (In-
put Sliding/NLMS). The convergence time to -10dB of the
NCE for Alternative/NLMS and Input Sliding/NLMS are
comparable. The proposed algorithm reduces the conver-
gence time to -15dB by 60% compared with Input Slid-
ing/NLMS. The convergence to the final value for Input
Sliding/NLMS is fastest.

Convergence for white Gaussian inputs has also been
compared. The NCE is shown by Fig. 6. The convergence
speed and accuracy are slightly improved. A possible rea-
son of convergence speed improvement for white signals
by introducing the RLS algorithm might be the influence
of the inter-channel cross-correlation.

6 Conclusions
This paper introduces an RLS algorithm and its stabiliza-
tion into the alternative learning algorithm for SAEC. Sta-
bilization techniques including a periodic reset and an adap-
tive forgetting factor are also proposed. Computer simu-
lation results show faster convergence and improved echo
return loss enhancement.
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