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ABSTRACT

This paper introduces a recursive least squares (RLS) al-
gorithm into the alternative learning algorithm for stereo-
phonic acoustic echo canceller, which can identify correct
echo paths without pre-processing. Stabilization techniques
including a periodic reset and an adaptive forgetting factor
are also proposed. Computer simulation results show faster
convergence and improved echo return loss enhancement.
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1 Introduction

Echo cancellers are used to reduce echoes in a wide range
of applications, such as TV conference systems and hands-
free telephones. To realistic TV conferencing, multi-channel
audio, at least stereophonic, is essential. For stereophonic
teleconferencing, stereophonic acoustic echo cancellers
(SAEC’s) [1-5] have been studied.

SAEC’s have a fundamental problem in which their fil-
ter coefficients cannot have an unique solution [1]. Though
SAEC’s with pre-processing [2] are good candidates for
solving this problem, audible sound distortion caused by
the pre-processing arises. An SAEC without pre-processing
which can estimate correct echo path has also been pro-
posed [4]. While no sound distortion are introduced, its
convergence speed is not so fast compared with SAEC’s
with pre-processing.

This paper proposes a recursive least squares (RLS)
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Figure 1: Teleconferencing using SAEC

algorithm [6] and its stabilization for the alternative learn-
ing algorithm. Section 2 reviews the SAEC and its funda-
mental problem, followed by the alternative learning algo-
rithm. Introduction of the RLS algorithm and its stabiliza-
tion are shown in Section 4. Computer simulation results
show the performance of the proposed algorithm.

2 Stereophonic Acoustic Echo Can-
celler and Uniqueness Problem

Figure 1 shows a teleconferencing using an SAEC. This
echo canceller consists of four adaptive filters correspond-
ing to four echo paths from two loudspeakers to two micro-
phones. Each adaptive filter estimates the corresponding
echo path.

The far-end signal x;(n) in the i-th channel at time in-
dex n is generated from a talker speech s(n) by passing
room A impulse response g, from the talker to the i-th mi-
crophone. ;(n) passes an echo path h; ; from the i-th
loudspeaker to the j-th microphone and become an echo
d;(n). Similarly, adaptive filters w; ;(n) generates an echo
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replica y;(n). w; j(n) is so updated as to reduce the resid-
ual echo e;(n)

SAEC’s have a fundamental problem in which their fil-
ter coefficients cannot have an unique solution [1]. SAEC’s
may have infinite number of solutions other than the opti-
mum solution w; ;(n) = h; ;.

)

3 Alternative Learning Algorithm

Analyses show that SAEC’s may have unique and optimum
solution when the number of taps Ny for SAEC and the
impulse response length N4 in room A satisfy Ny < N4
[5,7]. For echo cancellation performance, Np < Ny
is preferable where Np is the impulse response length in
room B. Therefore, if Ng < Nw < N4, SAEC in room
B achieves both perfect echo cancellation and optimum so-
lution. Such a condition, however, cannot be satisfied for
SAEC’s in both room A and B.

In order to satisfy the uniqueness condition for both
SAEC’s in room A and room B, the number of taps for
SAEC Ny is so chosen as to satisfy Ny /2 < Ny < Ny
and Ny /2 < Np < Ny . If the size of both rooms are
similar, which is usual case, such Ny may exist. In adap-
tation, Ny /2 taps are updated at a time; thus the effective
number of taps for SAEC Ny /2 is smaller than the im-
pulse response length in the far-end room N4. To avoid
the performance degradation caused by the tap shortage,
another Ny, /2 taps will also update at the other time.

The filter coefficient vector w; ;(n) is divided into two
sub-vectors w; ; r(n) and w; ;(n) show by

awi,j,Nw/Q—l(n)]T (1)

w; jp(n) = Wi g w1 ()T (2)

The superscript 7 denotes the transpose of a matrix or a
vector. In the first stage, w; ; r(n) is updated while w; ; »(n)
is fixed. This stage is repeated until w; ; s(n) converges.
As the second stage, w;_j »(n) is updated while w; ; r(n) is
fixed. This stage is also repeated until w; ; »(n) converges.
These two stages are repeated one after another.

An adaptive step-size and a convergence detection are
introduced. An adaptive step-size and a convergence detec-
tion are introduced for fast convergence with a small com-
putational cost. The adaptive step-size and the convergence
detection are carried out based on the coefficient modifica-
tion amount defined by

w; j.r(n) = [wijo(n),- -

[wi,j,NW/Q(n)v T

D(m) _ Zz‘:l Hwi,j,p(mK) — wi,jyp((m - 1K)

S llwi o (mE)| 2
A3)

where p is either f or b. To avoid the increase of the com-
putational cost, (3) is calculated once in a K iterations. Co-
efficient adaptation is stopped when (3) is calculated.

The filter coefficients are considered to be converged if

D(m — 1) < D(m) is satisfied. The step-size is controlled
by
D)\ Y4
:u(m) = Mmazx (D( )) 4)
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where D4, is @ maximum value of D(m) in a same stage.
Usually, D(1) is used as a Diqq. p(n) is used within
mK <n<(m+1)K.

The overview of the adaptation control is as follows:

1. Update filter coefficients with 11(0) = fiyqq for first
K iterations.

2. calculate D(1). Dypa. = D(1).

w

Update filter coefficients with p(m) by (4) for next
K iterations.

4. calculate D(m).

5. If D(m—1) < D(m), then proceed to the next stage.
6. If Dyyor < D(m), then Dy, = D(m).

7. Goto 3.

4 RLS Algorithm and Its Stabiliza-
tion

The RLS algorithm is introduced in order to improve the
convergence characteristics. Some stabilization techniques
are also introduced.

By using combined input signal vectors

mf(n) = [:cl(n),xg(n), Tty
z1(n— Nw/2+ 1), 22(n — Nw/2+1)]" (5)

xp(n) = [v1(n — Nw/2),22(n — Nw /2),- -+,
x1(n — Ny + 1), 22(n — Ny + 1)]7 6)
and also combined filter coefficient vectors
wj r(n) = [wi,5,0(n), w2,j0(n), -,
W1 5, Ny j2—1(1), w2,j,NW/2—1(n)]T @)
wjp(n) = [W1j Ny 2(N), Wa j Ny 72(1), -+,
wj,n—1(n), we 5 n—1(n)]", ®)

the RLS algorithm can be applied to the alternative learning
algorithm. The RLS based adaptation for the alternative
learning algorithm is summarized as

yj(n) =z [(nwj ;(n) +z], (Mw;p(n)  (9)
ej(n ) dj(n) —y;j(n) (10)

_ Py(n —1)xy(n)
ol = 15 1mT< WPy —ay) P
wp(n) = wy(n —1) + ky(n)e(n) (12)

Ppy(n) = A"'"Py(n—1) = A\ ky(n)x] (n)Py(n — 1)
(13)
where the subscript p is either f or b. Either w; s(n) or
w; p(n) is updated.
For stable and fast convergence, the following tech-
niques are used in the adaptation.
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Figure 2: NCE in early stage.

e Periodic reset
Reset P, (n) to zero once in L; samples. Such reset
avoids unstability.

e Freeze coefficients just after reset
Coefficient update in (12) is not carried out for Lo
samples after the reset.

e Adaptive forgetting factor
Adaptive forgetting factor defined by

A(m) = Ao + (1= o) {1 - (g(m))} (14)

max

is used, where D(m) is same as that in Section 3.
Doz is @ maximum value of D(m). A(m) is up-
dated once in K samples.

e Convergence detection as in Section 3

S Computer Simulations

Simulations have been carried out to show the performance
of the proposed algorithm. Far-end room impulse responses
g, are 60-tap FIR filters while those for near-end room h; ;
are 64-tap FIR filters. In this case, SAEC’s do not have
an unique solution. Adaptive filters are 64-tap FIR filters.
Colored noise by second-order AR model is used as a talker
signal. The pole locations are § = £45,r = 0.9. Additive
white Gaussian noise signal is introduced. The echo-to-
noise ratio is 60dB.

The proposed algorithm is compared with the standard
SAEC [1], the alternative learning algorithm [4], and the
input sliding algorithm [2]. The step-size p for the standard
SAEC is 1.0. The parameters for the alternative algorithm
with NLMS are ¢ = 0.5, K = 5000. A smaller step-size
is used for stability reason. For the proposed algorithm,
Ly =128, Ly = 2000, K = 6000, A\g = 0.9999 are used.
The parameters for the input sliding algorithm are chosen
aspu=1,Q =60,and L = 6.
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Figure 3: NCE in latter stage.
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Figure 4: ERLE.

Figure 2 compares the normalized coefficient error (NCE)
defined by

2 2
; i — hy ;
NCE() = S = byl
Zi:l Hhm'HQ

in early stage. Though the RLS algorithm without stabi-
lization (Alternative/RLS) converges fastest in early peri-
ods, impulsive increases of the NCE have been occurred.
Such increases are much smaller for the proposed algo-
rithm. The convergence time to -15dB of the NCE for the
proposed algorithm is almost 1/20 compared with the alter-
native learning algorithm with NLMS (Alternative/NLMS).

The NCE for latter stage is compared by Fig. 3. The al-
ternative learning algorithms achieve almost -20dB of the
NCE while that of the standard SAEC is -15dB. the pro-
posed algorithm reduces the NCE by 2dB compared with
that of Alternative/NLMS. The convergence time of the
proposed algorithm to -20dB of the NCE is reduced by al-
most 60% compared with Alternative/RLS.

The echo return loss enhancement (ERLE) is depicted
by Fig 4. Introduction of the RLS algorithm improves the
ERLE by almost 5dB.

15)



19th SIP Symposium 10,11,12/11/2004

e,
oS
.~

T Alternative/NLMS

10+ N

Proposed
(Alternative/RLS with Control)

S
S
~
S
~~o
S~
e
~<o

20 F

Normalized Coefficient Error [dB]

-25

0 5000 10000

Iterations [sample]

15000 20000

Figure 5: NCE compared with SAEC using pre-processing.
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Figure 6: NCE for white Gaussian inputs.

Figure 5 compares the NCE for the alternative learn-
ing algorithms with that for the input sliding algorithm (In-
put Sliding/NLMS). The convergence time to -10dB of the
NCE for Alternative/NLMS and Input Sliding/NLMS are
comparable. The proposed algorithm reduces the conver-
gence time to -15dB by 60% compared with Input Slid-
ing/NLMS. The convergence to the final value for Input
Sliding/NLMS is fastest.

Convergence for white Gaussian inputs has also been
compared. The NCE is shown by Fig. 6. The convergence
speed and accuracy are slightly improved. A possible rea-
son of convergence speed improvement for white signals
by introducing the RLS algorithm might be the influence
of the inter-channel cross-correlation.

6 Conclusions

This paper introduces an RLS algorithm and its stabiliza-
tion into the alternative learning algorithm for SAEC. Sta-
bilization techniques including a periodic reset and an adap-
tive forgetting factor are also proposed. Computer simu-
lation results show faster convergence and improved echo
return loss enhancement.
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