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ABSTRACT Brain-computer interface (BCI) aims
to create a new communication channel between hu-
man and computer by using brain signals, such as brain-
waves or electroencephalograms (EEGs). However there
are disadvantages in EEG based BCI ,e.g., its noise-
contamination, non-stationary, and low spatial resolu-
tion. To alleviate these problems, some filtering tech-
niques are applied. In such techniques, the common
spatial pattern (CSP) is one of outstanding spatial fil-
tering techniques that mostly applied in motor imagery
based BCI. The objective of CSP is to find the most
discrimination between two data sets by maximizing the
variance of one data set and concurrently minimizing the
variance of another data set. In this study, we focus on
applying CSP to the cognitive mental tasks, e.g., multi-
plication, virtual letter composing, object rotation, etc.
Thus, the feature extraction method is changed from the
standard way, which uses variance of CSP transformed
signals as a measure of the energy in corresponding fre-
quency bands, to a stationary approach by using the
Fourier transformation. This experimental also deals
with the multi-class problems hence the multi-class ex-
tensions of CSP are investigated. We purpose to com-
bine CSP spatial filter with error-correcting output code
framework (ECOC)which, boosts up the discrimination
between two mental tasks and corrects some classifica-
tion errors. The simulation results from 3 subjects con-
firm that CSP-ECOC combination method can increase
the accuracy rate from 88% to 90% for Subject S1, in-
crease the accuracy rate from 66% to 84%, and suppress
the error rate from 26% to 6% for Subject S6 and finally,
this method can provide the maximum accuracy rate at
96%(increase from 80%) for Subject S2.

1 Introduction

The electroencephalogram (EEG) based brain-
computer interface (BCI) is mainly used in non-invasive
BCI approaches. However EEG signals have some short-
comings in noise-contamination and low spatial resolu-
tion. The voltage potentials from sources can contribute
within a small radius through scalp toward each elec-
trode that makes the observation signals obscure and
noisy [1]. Moreover, EEGs are also reported that they

are inherent non-stationary caused by changes in the
individual subject’s brain across experimental sessions
[2]. To remedy these such problems, some spatial fil-
tering techniques are employed to reduce noise and get
more localized signals. The examples of the spatial filter-
ing techniques that are applied in BCI framework, such
as bipolar filtering, common average reference method,
Laplace filtering, and finally, the statistical linear trans-
formation based spatial filtering that linearly transform
raw EEGs to new feature spaces [1].

In this study, we focus on the CSP based spatial fil-
tering. We concentrate in the concept of CSP that aims
to find the most discrimination between two data sets
by optimizing the ratio between within-class scatter and
between-class scatter of those two data sets [6].

CSP have been successfully applied to classify motor
imagery based EEG [1]. However, this study investigates
the CSP method on the cognitive mental tasks (e.g.,
mathematical multiplication, letter composing, 3D ob-
ject rotation and visual number counting), which have
different manners.

In previous researches, Nakayama et al. [8], [9] used
the Fourier transform based features and some opti-
mized preprocessing with the multilayer neural network
(MLNN) and successfully to classify 5-class mental tasks
at accuracy 78-88%. In this study, we follow this line by
adding CSP spatial filtering to enhance discriminate be-
tween the mental tasks and provide more classification
accuracy. Furthermore, refer to some discussions in [2],
the significant information of mental tasks reveals in low
frequency band and dimminshes in high frequency band.
In order to extract more information in low frequency
band and reduce noise in high frequency band, we also
propose a modified method to the sampling reduction
procedure.

This work engages with 5-class mental task problems,
but originally CSP is designed for a binary-class prob-
lem. To deal with a multi-class problem, Dornhege
et al.[3] have proposed many multi-class extension ap-
proaches for extend two-class CSP to multi-class appli-
cation. Those methods are called, CSP within multiple-
binary classification (CSP-IN), binary combination with
one versus the rest strategy based CSP (CSP-OVR) and
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CSP with simultaneous diagonalization method (CSP-
SIM). We investigate those mentioned approaches based
on MLNN and for the CSP-IN approach, we propose the
ensemble of binary classifiers combine with the error-
correcting output code (ECOC) framework. ECOC is a
general framework to solve multi-class problems by re-
ducing the multi-class problems to several binary class
problems with error-correcting property. We combine
this property with the CSP that theoretically make the
classes most discriminant. We purpose to use CSP-
ECOC combination to boost up the accuracy rates for
EEG classification.

2 Common spatial pattern

CSP algorithm [6] aims to find spatial filters that
project the original signals to the most difference in the
temporal variance of signals between two sets of signals
i.e., maximize the variance of a data set, simultaneously,
minimize the variance of data set of another data set.
In short, the two data sets will be transformed into the
most differentiated direction in the term of variance of
these data sets.

2.1 CSP algorithm

1. Given 2-class mental tasks of EEG signals X1 for
class1 andX2 for class2 with dimension of [N×K],
where N is the number of signal’s channels and K
is the number of samples in time domain.

2. Compute the normalized auto-covariance matrices
Si for each class

Si =
XiX

T

i

trace(XiX
T

i
)
, i ∈ {1, 2}

3. First, the whitening transformation should be
preformed by compute the sum of both auto-
covariance matrices

Ssum = S1 + S2

4. Then, decompose the eigenvector and the eigen-
value of the matrix Ssum as:

Ssum = UΛUT

where U and Λ are the eigenvector matrix and
eigenvalue matrix of Ssum

whitening transformation matrix can be received
from:

W = Λ−
1

2UT

5. Apply the whitening transformation to both auto-
covariance matrices then we got the whitening
transformed covariance as:

Ŝ1 = WS1W
T and Ŝ2 = WS2W

T

Next, CSP spatial filters are computed from these
whitening transformed covariance matrices

6. Refer to the concept of CSP, these whitening
transformed covariance matrices (i.e.,Ŝ1 and Ŝ2)
should share a common eigenvector matrix and
corresponding eigenvalues of the sum of Ŝ1 and

Ŝ2 should be one. Therefore, Ŝ1 and Ŝ2 can be
decomposed as:

V T Ŝ1V = D

V T (Ŝ1 + Ŝ2)V = I and V T Ŝ2V = I −D
where V is a common eigenvector matrix of Ŝ1 and
Ŝ2, D is a eigenvalue matrix of Ŝ1,and I is identity
matrix

7. Then, we obtain the spatial filters of CSP trans-
formation matrix as:

V̂ = V TW

8. Practically, we choose only few most important
eigenvectors from by sorting the eigenvalues in D
in descending order and choose 2m eigenvectors
(2m < N) that corresponding to the m largest
and the m smallest eigenvalues. Then we obtain:

V̂m = [v̂1, ..., v̂m, v̂N−m+1, ..., v̂N ]

where v̂i is a eigenvector the corresponding to a
eigenvalue in D

9. Finally, the projected signals are defined as:

Zi = V̂mXi, i ∈ {1, 2}

2.2 Extension to multi-class CSP

There are three approaches of multi-class extensions,
discussed in [3].
1) CSP-IN: separate the problem to several sub-binary

problems and perform CSP spatial filters for those pairs
of problems
2) CSP-OVR: use several binary CSPs on one multi-

classifier
3) CSP-SIM: find CSP by using joint approximate di-

agonalization (JAD) method and apply on one multi-
classifier
CSP-IN and CSP-OVR approaches are similar in the

concept of extension by adding more binary CSP pro-
cesses to form a multiple classification. However, CSP-
IN uses several binary classifiers to deal with each binary
problem, but CSP-OVR solves these binary problems
with one multi-class classifier.
CSP-SIM derives from the concept of 2-class CSP al-

gorithm that CSP algorithm will find a simultaneous di-
agonalization of both covariance matrices whose eigen-
values sum to one. Thus it is possible to extend to many
classes if we can approximate a simultaneous diagonal-
ization for many classes problem. However, there is no
general strategy to choose the appropriate CPS patterns
for multi-class CSP. (e.g., 2-class problem uses the high-
est or the lowest eigenvalue). Dornhege et al. [3] have
also proposed the heuristic way to solve this problem by
using some score strategy. GivenD is an approximate si-
multaneous diagonal matrix, computed by joint approx-
imate diagonalization (JAD). D is in a form of concate-
nated eigenvalue matrices i.e., D = [D1, D2, ..., Dn], n is
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the number of classes then choose the appropriate eigen-
vectors for each class i corresponding to the highest score
of eigenvalue in each sub-matrix Di by following crite-
ria: score(λij) = max(λij , 1/(1+ (N − 1)2λij/(1/λij))).
Note that if one eigenvector is selected more than once,
replace it by the eigenvector with the next highest score.

2.3 Binary CSP with error-correcting output

code

CSP-IN is the first algorithm of CSP’s multi-class ex-
tensions.The idea of CSP-IN is separating the multi-class
problem to sub-binary problem and simply doing the
CSP within binary classification with one versus the rest
or pairwise strategies [3]. We adopt this idea and im-
plement on the error-correcting output code framework
henceforth, called CSP-ECOC. We aim that combina-
tion between error-correcting properties of ECOC and
discriminative feature extraction of CSP could provide
some enhancements in classification.

3 Error-correcting output codes

Error-correcting output codes (ECOC) are approved
as a general framework to combine binary problems to
address the multi-class problem [11].
In ECOC framework consists of two steps: a coding

step, where a codeword is assigned to each class, as-
sume if N -class problem is classified by binary classifiers,
we need n binary classifiers to form n different binary-
discriminated partitions. To supervise those classifiers,
a set of binary target with length n is assigned for each
class, called a codeword. Arranging the codewords as
rows of matrix, finally, we can define a codeword matrix
M ,where M ∈ {0, 1}N×n.
Another step is a decoding step, where a testing out-

put vector searches for the most similar codeword in the
codeword table. The performance of ECOCmostly relies
on the codeword table that applied to the system. The
regulations of designing codewords have been discussed
in many researches. We can categorize the method of
generating codewords into three types:
1) generating from the algebraic coding theory methods
2) generating by randomization
3) generating unique codewords for a particular data set
In this study, we use the generalized algebraic coding

theory, i.e., exhaustive ECOC (E-ECOC). For decoding,
we use the L1-norm distance. We prefer to use L1-norm
distance instead of the hamming distance because it is
more flexible to adjust the rejection threshold regarding
for unintended EEG.

3.1 Coding strategy: Exhaustive ECOC

Dietterich and Bakiri [11] have proposed a code and
a procedure for generating a well balance hamming
distance between rows and include all possible non-
trivial and non redundant 2(N−1) − 1 length codes for
N -class problem, called exhausitive ECOC (E-ECOC).
This code is recommended to use for 3 ≤ N ≤ 7. The
procedure for generating E-ECOC is as follows: Assign

the first row is all ones. 2ndrow consists of 2(N−2) zeros,
followed by 2(N−2) − 1 ones. 3rdrow consists of 2(N−3)

zeros, followed by 2(N−3) ones, followed by 2(N−3) zeros,
followed by 2(N−3) − 1 ones. ithrow consists of alternat-
ing 2(N−i) zeros and ones. Finally, the last row contains
0, 1, 0, 1, 0, 1, . . . , 0.
For 8 ≤ N ≤ 11, Dietterich and Bakiri have suggested

selecting some good subset of columns from the exhaus-
tive code by optimization algorithm. For N > 11, the
random code generation with hill-climbing procedure is
recommended.
The exhaustive ECOCs for 5 classes, obtained from

the generation procedure which has been detailed in [11]
are shown in Table 1 below:

Table 1: Codeword table of E-ECOC for 5-class problem
Classifier

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

ω1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ω2 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

ω3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1

ω4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

ω5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Performance of correcting codes

The efficiency of ECOC is determined by the capabil-
ity of error-correcting. It is depended on distance be-
tween codewords that can be calculate by ⌊(d − 1)/2)⌋
bits, which d is the distance between row’s codewords in
the codeword matrix. For example, in Table 1, distance
d between each row of E-ECOC is 8 so, the capabil-
ity of error correcting ⌊(d − 1)/2)⌋ is 3 bits. Because
the distance d corresponds to the code’s performance,
so it is possible to increase the performance of coding
by expanded the length of codeword. In spite of that
does not mean, we should generate the number of bit in
codewords as long as we can, in order to enlarge the dis-
tance d. Inversely, the longer codeword means the more
classifiers and more computation. The issues about op-
timization of codeword length are discussed in recent
ECOC researches, but they are not in our study’s scope.

3.2 Decoding strategy: L1-norm distance

In decoding step, the output vectors from the base
classifiers are compared to the patterns in codeword ta-
ble for searching the most similar pattern. To find the
similarity, the most easily techniques like L1-norm based
distance is applied. Given a testing output from the b
classifiers is combined to a vector: Y = [y1, y2, . . . , yb]

T

,where yj is the output of jth base classifier. The L1-
norm distance is defined by

dj =

b∑

j=1

|Cij − yi| (1)

where Cij is a target value at ith row, jth column in
codeword matrix.
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4 Methodology

4.1 Data acquisition

In this study, we use the brainwave data sets that are
available from the web site of Colorado state university
[10]. To perform the experimental, the data sets of sub-
ject No.1, 2 and 6 are chosen, henceforth, called S1, S2
and S6, respectively. The S1’s data set was used in con-
ventional method [8], [9]. The conventional method also
worked well on S2’s data set but did not work well on
S6’s ,hence they are chosen for comparison. Each data
set was consisted of 7 channels of signals from 7 elec-
trodes ,which were placed at 6 positions: C3, C4, P3,
P4, O1, and O2 of the International 10-20 system and
1 EOG. The signals were recorded at sampling rate of
250Hz for 10 seconds (total 2500 samples per each chan-
nel). These 5 mental tasks are performed in data sets:
Baseline: do nothing, but relaxed
Multiplication: do non-trivial multiplication
Letter composition: mentally compose the letter
Rotation: rotate a complex 3D object in mind
Counting: write the numbers one by one in mind

4.2 Preprocessing and feature extraction

The EEG data sets in our study are 5-class mental
tasks. Therefore, the multi-class extension techniques
for CSP are required. We perform 3 methods of multi-
class extensions, i.e., CSP-OVR, CSP-SIM and CSP-
ECOC.

CSP based spatial filtering

CSP is a supervised spatial analysis thus, it needs
some initialization. First, the spatial filters are de-
termined from the class-separated, trial-concatenated
EEGs of training set. We use 6 channels of EEGs, i.e.,
C3, C4, P3, P4, O1, and O2 henceforth, called Ch1, Ch2,
Ch3, Ch4, Ch5, Ch6 and EOG as Ch7 for short. Note
that Ch7 (EOG) is not included for computing the CSP
spatial filters, but it is used for detecting eye’s artifacts
in later. After CSP spatial filters are received, com-
monly, only few effective spatial filters are enough for
discrimination. For CSP-OVR method and CSP-ECOC
method, the number of spatial filters is varied from 1 to
4 and compared for finding the best accuracy rate. For
CSP-SIM method, it has a difference scheme because
it is based on the approximated joint diagonalization.
In this method, we have available CSP’s spatial filters
equal to the number of original channels. In our case,
we use 6-channel EEGs for 5-class mental tasks, thus, we
have only 1 available spatial filter per class. Finally, the
CSP transformation matrix is formed by those selected
spatial filters.

Fourier transformation

Most of the researches in BCI, applied CSP to event-
related EEG or motor imaginary based EEG that power
of bandpass filtered EEGs are estimated by variances of
interval signals and the activities are detected by the

changing of variances. CSP analysis can be directly ap-
plied to extract those variance based features. However,
this study deals with the mental tasks that rely on sta-
tionary of EEG signals in duration. For that reason, we
attempt to use CSP spatial filtering without consider-
ing the time-domain information. Thus, Fourier trans-
form based features that neglect time-domain informa-
tion are considered. The Discrete Fourier Transfor-
mation (DFT) of the EEG signal x(n) is given by

X(k) =

N−1∑

n=0

x(n)exp(−j
2π

N
kn), k = 0, 1, 2, . . . , N−1(2)

where N is the number of EEG samples
Then the spectral characteristics at frequency k of

EEG are obtained by coefficients X(k).

Sample reduction method

After perform the Fourier transform on brainwaves,
in order to reduce contaminated noises in brainwaves
and also reduce computation in classification, the sizes
of input are reduced by averaging the absolute values of
Fourier coefficients in interval [8], [9]. Note that those
values contain the spectral information of the corre-
sponding frequencies.
In our work, Fourier transformed features of all fre-

quency bands (0.1-100 Hz) are employed and reduced
sampling by averaging the values in interval. However,
the significant information of mental tasks explicitly re-
veals in the low frequency region and diminishes in high
frequency region. Thus, sampling reduction with uni-
form resolution [8] may inattentively miss some infor-
mation in low frequency band and accent some noises in
high frequency band to input patterns.
To alleviate those problems, the non-uniform resolu-

tion sampling reduction is proposed. In this method,
the intervals of averaging are not equal, but they are in-
creased by the factor of 2k , where k = 2, 3, . . . ,K+1, K
is the number of reduced sample.Note that the samples
on only the right side of Fourier transformed signal are
used because they are symmetrical to the samples on the
left side.

Non-linear normalization

The information of mental tasks may widely dis-
tribute, not only in the peak’s frequency band. Impor-
tant information for classification may be included in
small non-prominent frequency band. Moreover, natu-
rally in the neural networks, large inputs play an impor-
tant role. To avoid the neural network’s biased learning,
this non-linear normalization is applied to the input data
[8].

f(x) =
log(x− xmin + 1)

log(xmax − xmin + 1)
(3)

Channel-concatenated patterns

To create input pattern for MLNNs, Fourier trans-
form based features from each channel are concatenated
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Table 2: Examples of number of input dimension which
use in experimental

Method #SF #Class #Sample #Input
(channel) (pair) (samples) (samples)

CSP-OVR 2 5 5 55

CSP-SIM 1 5 5 30

CSP-ECOC 4 1 5 25

by order to create the patterns and applied to classifica-
tion process. For examples, CSP-OVR method, which is
based on one over the rest strategies, required 5 pairs of
problems for 5-class problem. Assume that we required
2 spatial filters for each pair ,thus 5 sets of 2 channel-
signals are acquired. if each signal reduces sampling to
5 samples then we will get (5 pairs × 2 channels) × 5
samples = 50 samples. To detect some eye’s artifact,
one more channel of EOG signal is included, so totally
55 samples per one input pattern are acquired.
The examples of the input number of patterns are

shown in table 2

4.3 Classification

We focus on backpropagation based MLNN for clas-
sification. MLNNs are performed both in multi-class
classification approaches (for CSP-OVR and CSP-SIM)
and binary classification approaches (for CSP-ECOC).
The parameters of neural network are setting as shown

in Table 3 and Table 4.

Table 3: MLNN’s setting for CSP-OVR and CPS-SIM
Parameter

Input node Refer to Table 2

Output node 5

Hidden node 20

Iteration 100000

Learning rate 0.01

Activation function Tanh - Logistic sigmoid

Initial weight Range -0.1 – 0.1

Threshold of rejection 0.6

Generalization method:
Random noise -0.1 – 0.1

4.4 Validation and evaluation

This experimental are subject-specific classification.
Data of each subject are separately applied to classi-
fiers. The experiments are evaluated by using 5-fold
cross validation. EEG data of S1 and S6 (who preformed
completely 2 sessions, 10 trials of EEG recordings) are
separated to 8 trials for training and 2 trials for testing.
Similarly, EEG data of S2 (who performed 1 session of
EEG recordings) are separated to 4 trials for training
and 1 for testing. Each trial contains 5 mental tasks of
EEGs. So we totally have 50 data for S1, S6 and 25 data
for S2.

Table 4: MLNN’s setting for CSP-ECOC
Parameter

Input node Refer to Table 2

Output node 1

Hidden node 10

Iteration 80000

Learning rate 0.01

Activation function Tanh - Logistic sigmoid

Initial weight range -0.1 – 0.1

Threshold of rejection 0.32

Generalization method:
Random noise -0.1 – 0.1

To evaluate the classification performance, a correct
classification rate (Pc), an error classification rate (Pe)
and rate of correct and error classification (Rc) are used.

Pc =
Nc

Nt

× 100% (4)

Pe =
Ne

Nt

× 100% (5)

Rc =
Nc

Nc +Ne

(6)

Nt = Nc +Ne +Nr (7)

where Nc, Ne and Nr is the number of correct classi-
fications, number of error classifications and number of
rejections, respectively.
Finally, the results of simulation are averaged by 5

times experimental.

5 Experimental Results and Discussion

Experimental results

The results of classification are demonstrated in Table
5. S1’s EEG data set, which has worked well with the
conventional method (ORG) [18]-[19], also worked well
with the overall CSP method by accuracy rates are 84%-
90% ,although it seems that the preformance are slightly
degraded.
The CSP filtering works well on S2’s EEG data set,

the correct classification rates are obviously increased
to 96% by CSP-ECOC method, increased to 92% and
88% by CSP-SIM method and CSP-OVR method, re-
spectively. Moreover, the error classification rates can
be decreased to 0% by CSP-OVR and CSP-SIM method.
For S6’s data set, the results also have indicated that

the correct classification rates are obviously increased
from 66% to 84% and the error classification rates are
also significantly decreased from 26% to 6% by CSP-
ECOC method. It could be seen that CSP-spatial filter-
ing provides some trends of improvement on classifica-
tion performance.
The reason of the improvement may cause from some

benefits of CSP spatial filtering that make some increase
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of discriminated information on input patterns that ex-
pressed in Figure 2 for CSP-OVR and Figure 3 for CSP-
SIM method.

Table 5: Experimental Results for S1
S1 Pc Pe Rc #Classifier

ORG 88 4 0.96 1

CSP-OVR 84 6 0.93 1
CSP-SIM 84 8.6 0.90 1

CSP-ECOC 90 6 0.94 15

Table 6: Experimental Results for S2
S2 Pc Pe Rc #Classifier

ORG 80 4 0.95 1

CSP-OVR 88 0 1.0 1
CSP-SIM 92 0 1.0 1

CSP-ECOC 96 4 0.96 15

Table 7: Experimental Results for S6
S6 Pc Pe Rc #Classifier

ORG 66 26 0.72 1

CSP-OVR 82 8 0.91 1
CSP-SIM 76 14 0.84 1

CSP-ECOC 84 6 0.93 15

6 Conclusion

We have experimented on CSP spatial filtering and
the multi-class extensions of CSP apply to EEG data
sets which are available from the Colorado State Uni-
versity website. These mental tasks have different prop-
erties from the motor imagery mental tasks. Therefore,
we change the way of standard CSP’s feature extraction
to more stationary method by using Fourier transform
based features. We also developed the non-uniform reso-
lution technique for sampling reduction in pre-processing
process to suppress more noises in high frequency region.
Finally, with the principle of CSP, which aims to dis-
criminate the classes, combine with ECOC framework,
we can boost up the correct classification rates (Pc) from
88% to 90% for Subject S1, 80% to 96% for Subject S2
and 66% to 84% for Subject S6. Furthermore, the error
classification rates (Pe) can be significantly suppressed
from 26% to 6% for Subject S6.

References

[1] G. Dornhege, J. d. r. Millán, T. Hinterberger, D.
J. McFanland and K. R. Müller,“Toward Brain-
Computer Interfacing”, The MIT Press, 2007

[2] Z. A. Keirn and J.I. Aunon,“A new mode of commu-
nication between man and his surroundings” IEEE

Transactions on Biomedical Engineering, Vol. 37,
No. 12, pp.1209-1214, Dec., 1990

[3] G. Dornhege, B. Blankertz, G. Curio, and K. R.
Müller, “Boosting bit rates in noninvasive EEG
single-trial classifications by feature combination
and multiclass paradigms”, IEEE Transactions on

Biomedical Engineering, Vol. 51, No. 6, pp. 993-
1002, June, 2004

[4] M. Grosse-Wentrup and M. Buss, “Multi-class
Common Spatial Patterns and Information The-
oretic Feature Extraction” IEEE Transaction on

Biomedical Engineering, Vol. 55, No. 8, pp. 1991-
2000, Aug., 2008

[5] T. Yan, T. Jingtian, and G. Andong, “Multi-
Class EEG Classification for Brain Computer In-
terfaces based on CSP” International Conference

on BioMedical Engineering and Informatics, Vol. 2,
pp. 469-472, May, 2008

[6] K. Fukunaga, “Introduction to statistical Pattern
Recognition, 2nd ed.”, Academic Press, 1990

[7] R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern
Classification, 2nd ed.”, Wiley-Interscience, 2000

[8] K. Nakayama, K. Inagaki, “A brain computer in-
terface based on neural network with efficient pre-
processing” Proc.IEEE, ISPACS, pp. 673-676, Dec.,
2006.

[9] K. Nakayama, Y. Kaneda, and A. Hirano, “A brain
computer interface based on FFT and multilayer
neural network-Feature extraction and generaliza-
tion” Proc.IEEE, ISPACS, pp. 826-829, Nov.28-
Dec.1, 2007.

[10] http://www.cs.colostate.edu/eeg/

[11] T.G. Dietterich and G. Bakiri, “Solving Multi-
class Learning Problems via Error-correcting Out-
put Codes” Journal of Artificial Intelligence Re-

search, Vol. 2, pp. 263-286, 1995

[12] A. Zhang, Z. Wu, C. Li and K. Fang, “On
Hadamard-Type Output Coding in Multiclass
Learning” Lecture Notes in Computer Science Vol.
2690 pp. 397-404, 2003

[13] F. J. MacWillians, and N. J. A. Sloane, “The The-
ory of Error-Correcting codes”, Elsevier Science
Publishers, 1977

- 114 -


