NNを用いたBCIにおける自己組織化マップによる 多チャネル脳波の特徴抽出法の検討

On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

> 中山謙二† 齋藤宏哉† 平野晃宏† †金沢大学大学院 自然科学研究科 電子情報工学専攻

Hiroya SAITO[†] Kenji NAKAYAMA[†] Akihiro HIRANO[†] [†]Graduate School of Natural Science and Technology, Kanazawa Univ.

E-mail: nakayama@t.kanazawa-u.ac.jp

アブストラクト

脳波の高速フーリエ変換(FFT)と階層形ニューラルネッ トワーク (MLNN) を用いるブレイン・コンピュータ・イ ンターフェイス (BCI) に関して, 脳波から多くの情報を 得るために頭部の複数個所(多チャネル)で測定される 場合が多く, 多チャネルのデータから如何に特徴を抽出 するかという問題がある.

本研究では、多次元データのクラスタリング手法である 自己組織化特徴マップ (SOFM) を用い,写像空間に投影 した脳波データをニューラルネットワークで構成される BCIの入力とする方法により、分類性能の向上を図る.ま た,SOFM のパラメータや拡張形,構成の見直しを行う ことによる性能変化を調査し、最適な構成法を提案する. ABSTRACT

FFT and Multilayer Neural Networks (MLNN) have been applied to 'Brain Computer Interface' (BCI). In the BCI systems, how to extract individual features of mental tasks from multi-channel brain waves is an important problem.

Self-Organizing Feature Map (SOFM) is one of clustering methods for multi-dimensional data. In this paper, SOFM is applied to generating the MLNN input data. Classification performance can be improved by increasing dimension of the SOFM output. Furthermore, The performance is investigated based on parameters, modified forms and constructions. A useful realization using SOFM and MLNN is proposed.

1 まえがき

近年、人間とコンピュータをつなぐインターフェイス として様々な新しいインターフェイスが検討されており, その中で、人間の脳波を解析して、コンピュータとのイ

ンターフェイスとする、ブレイン・コンピュータ・イン ターフェイス (BCI) が注目されている. BCI の基本原理 は、被験者の脳波や脳磁波を多チャネルで測定し、その データの特徴を解析して、被験者がイメージしたこと(メ ンタルタスク)を推定し、それに基づいてコンピュータや 機械を操作することである [1][2].

BCIの方式としては、帯域のパワースペクトルと非線形 分類,ARモデルと線形分類,空間パターンと線形分類, 隠れマルコフモデル,などを用いる方法がある[3],[4]. また、ニューラルネットワークの BCI への応用も活発に 検討されている [5]-[9]. これまでの研究で脳波のフーリエ 変換と階層形ニューラルネットワークを用いる方法につ いて、有効な前処理の方法が提案され、ある程度の分類 性能を持つ BCI が構築されている [11]-[12].

特徴抽出法に脳波のフーリエ変換に加えて自己組織化 特徴マップ (SOFM) を用いる方式では,特徴空間の分解 能を調整することで,従来法と同程度の分類性能時にお ける入力データ量の削減、入力データ量を増やした際の 分類性能は向上を確認することができた.しかし、従来 法による分類性能が低い被験者のデータを入力とした場 合,SOFM を用いた方式では分類性能が低下することが 分かった.これは、メンタルタスク想像時の被験者の脳波 データの差異が、データベクトルの距離を用いる SOFM を行なう際に影響し特徴を損失したと思われる.このこ とは、BCI において脳信号データ測定の被験者の訓練量 や精神状態が、個々の分類性能に大きく影響することか らも推察できる.

本稿では, SOFM のパラメータや拡張形による分類性 能の変化を解析し, SOFM と MLNN による BCI の性能 向上と共に、どの被験者に対しても分類性能を発揮でき る汎用性の高い構成を目指す.

2 脳波の測定とメンタルタスク

本稿では、コロラド州立大学が Web 上で公開している 脳波データを用いる [10]. 脳波の測定の際に、用いられた メンタルタスクは、次の5つである.

- できるだけリラックスする (Baseline)
- 掛け算を暗算でする(Multiplication)
- 手紙の文を考える(Letter-composing)
- 回転する3次元物体を想像する(Rotation)
- 数字を順番に書くことを想像する(Counting)

図 1: 電極の位置

脳波を測定する際の電極の位置を,図1に示す,C3, C4,P3,P4,O1,O2,EOGの7チャネルである.EOG は、まばたきなどの眼球の運動による信号を検出する電 極である。各メンタルタスクに対して,10秒間測定し, 250Hzでサンプリングされたので,1 チャネルあたり 250Hz×10sec=2,500サンプルのデータがある.

7 チャネル分のデータが,1つのデータセットとなる.

3 脳波データの特徴抽出

脳波データをニューラルネットワークに入力するにあたり,有用な特徴量を抽出するために以下のような処理 を行う [11]-[12].

- フーリエ変換による特徴量抽出
- 平均化によるサンプル数低減
- データの非線形正規化

以上のような特徴抽出を経て、ニューラルネットワーク の入力データとしては、7チャネル分並べたものを用いる.

4 階層形ニューラルネットワークによるメンタルタスク の分類

メンタルタスクの分類には隠れ層が1層の2層形ニュー ラルネットワークを用いる.活性化関数として、シグモ イド関数を用いる.入力ユニット数が1チャネルあたり、 10サンプルを7チャネル分用意するので、合計70個であ り、出力ユニットは5種類のメンタルタスクに対応して5 個用いる.目標出力としては、該当するメンタルタスク に対応する出力ユニットに 1, その他は 0 を割り当てる. 最も大きな値を持つ出力ユニットに該当するメンタルタ スクを推定結果とする.もし,出力が全体的に小さい値 のときは,判定不能(リジェクト)とする.結合荷重の学 習はバックプロパゲーション(BP)法で行った.

4.1 シミュレーション条件

5種類のメンタルタスクに対して,10秒間の測定を各 被験者について,10回ずつ行ったので,合計50組データ セットがある.そのうち,40セットを学習に,残りの10 セットをテストに用いる.テストに用いるデータセット の選択方法を5回変えて,分類を行い,その平均値で推 定能力を評価する[3].ニューラルネットワークの各種パ ラメータは以下のように設定する.正答率の向上を目的 に分類性能を比較するため,リジェクトのための閾値は0 とする.

- ・活性化関数: シグモイド関数
- ・隠れ層のユニット数:20
- ·セグメント分割:無し
- · 学習係数: 0.1
- · 学習回数: 50000 回
- ·結合荷重の初期値: ± 0.1 の範囲でランダム
- ・リジェクトする閾値:0

以下の表1,2が、フーリエ変換と誤差逆伝搬MLNNに より、二人の被験者の測定データを分類したものである. 以降はこの分類性能と比較して特徴抽出法を検討する.

タスク	В	Μ	L	R	С	平均
正答率 [%]	90	90	60	80	100	84

表 1: 従来法による分類結果 (被験者 1)

タスク	В	М	L	R	С	平均
正答率 [%]	80	80	60	80	80	76
表 2: 従来法による分類結果 (被験者 2)						

5 自己組織化特徴マップと階層型ニューラルネットワー クによるメンタルタスクの分類

5.1 自己組織化特徴マップ (Self-Organizing Feature Map:SOFM)

自己組織化特徴マップ (SOFM)[13][14] は, ニューラル ネットワークの一種で, 中間層の無い2階層型の教師無 し競合学習モデルである.

SOFM は入力層と出力層であるマップ層の二つの層か ら構成されている.マップ層には *M* 個のノードが直線状, 格子状や球状等 (本稿では 2 次元の格子状) に配置され, *n* 次元の入力層は,入力データの次元と等しい数の入力ノー ドから構成されている.マップ層の各ノードと入力層に属 が与えられている.図2にSOFMの概念図を示す.

図 2: SOFM の概念図

以下に SOFM のアルゴリズムを示す.

Step1 ネットワークの初期化

入力層とマップ層の間の全ての重みの初期値 w_i(0) をラ ンダムに設定する.

Step2 入力ベクトルの入力

入力層に入力ベクトル $\mathbf{x} = (x_1, x_2, \dots, x_n)$ を入力する.

Step3 マップ層で入力ベクトルとの距離を計算し、最小 ノードを選択

マップ層では,各ノードの重みベクトルと入力ベクトル との距離を計算する. ここで距離の算出には様々な方法 があるが、本稿ではユークリッド距離を用いる.

$$|\mathbf{x} - \mathbf{w}_c| = \min|\mathbf{x} - \mathbf{w}_j| \qquad j = 1, 2, \dots, M$$
(1)

上式より,距離が最小となるノード cを選択し,このノー ドを勝者ノードとする.

Step4 重みベクトルの学習

勝者ノードとその近傍ノードの重みベクトルが次式によ り更新される.

$$\mathbf{w}_{j}(t) = \begin{cases} \mathbf{w}_{j}(t) + \eta(t)[\mathbf{x}(t) - \mathbf{w}_{j}(t)] & j \in \Lambda_{c} \\ \mathbf{w}_{j} & \text{Otherwise} \end{cases}$$
(2)

ここで, η(t) は学習回数に応じて減衰する学習率であ り, Λ_cは勝者ノード c の近傍ノードの範囲を決定する近 傍関数である.こちらも学習回数に応じて縮小する.本 稿では,

$$\eta(0) = 0.1$$

 $\eta(t) = \eta(0)(1 - (\frac{t}{T})^2)$

により,学習率を決定する.Tは学習回数,tは現在の学 習回数を表す. T = 1000の学習率を図3に示す.

近傍関数は、SOFM によって様々な形状を取り入れる ことができるが、本稿では (c+d, c+d), (c-d, c+d), (c+d), (c+*d*,*c*-*d*), (*c*-*d*,*c*-*d*) を頂点とする正方形形状の内部を

する全てのノードの間には結合荷重 \mathbf{w}_i , $j = 1, 2, \dots, M$ 近傍関数 Λ_c とする. d は学習回数と共に減少し、次式で 表される.

$$d(0) = \text{round}(0.3\sqrt{(M_{\text{row}})(M_{\text{cul}})})$$

$$d(t) = \text{round}(d(0)(1 - (\frac{d(0) - 1}{d(0)})(\frac{t}{T})^2))$$

round()は()内の数の小数点以下の四捨五入を表す. T = 1000の時の*d*(*t*)を図4に示す.

Step5 Step2 へ戻る

Step2~Step5の動作を繰り返して、重みを学習していく.

5.2 SOFM の特徴空間における分類

以下の条件で,従来の MLNN への入力データを SOFM の特徴空間に射影する.

.マップ層 (正方形型)の一辺のノード数:50

· 学習回数:500

特徴空間における入力データの最近傍点の一例を図 5, 色毎のメンタルタスクを表3で示す.

図 5: 特徴空間における入力データの最近傍点

色	メンタルタスク
青	Baseline
赤	Multiplication
緑	Letter-composing
ピンク	Rotation
黄	Counting

表 3: メンタルタスク対応表

SOFM における各ノードと脳波データとのユークリッド距離を、メンタルタスクの特徴量として MLNN の入力とする.入力データの一例を図 6 に示す.赤くなっている部分が距離が短く、青が長い.

図 6: 脳波データとマップ上の各ノードとの距離

5.3 階層形ニューラルネットワークによるメンタルタ スクの分類

以下の条件で,SOFM に前処理後の入力データを学習 させ,MLNNへの入力データを作成する.特徴空間の大 きさがそのまま入力データの大きさとなるため,情報量 の変更により,分類性能にどのように影響するかを検討 する.

·マップ層 (正方形型)のノード数:25(5x5), 225(15x15), 625(25x25)

· 学習回数:500

その他のパラメータは第4.1節と同じである.SOFM では重みの初期値を乱数で決定するため、シミュレーショ ン毎に正当率が若干異なる.本研究では、予め定めた5通 りの重みの初期値に対してシミュレーションを行ない、そ の平均で評価することとする.

ノード数	В	Μ	L	R	С	平均 (%)
$25(5 \times 5)$	90	80	70	90	90	84
$225(15 \times 15)$	100	90	70	90	90	88
$625(25 \times 25)$	100	90	70	100	90	90

分類結果を表4,表5に示す.

表 4: SOFM を用いた場合の分類結果 (被験者 1)

ノード数	В	Μ	L	R	С	平均(%)
$25(5 \times 5)$	46	52	30	64	72	52.8
$225(15 \times 15)$	72	72	38	62	90	66.8
$625(25 \times 25)$	74	72	56	72	86	72

表 5: SOFM を用いた場合の分類結果 (被験者 2)

被験者1の場合,従来方では,入力データのサンプル数は70サンプルなので,5×5=25個のノードでSOFMを用

いた場合,正答率は低下せずに入力データ量を約36%に 削減できていることが分かる.また,SOFMのノード数を 増やした場合では,ノード数すなわち MLNNの入力デー タ量の増加に伴い,正答率も向上した.これは,特徴空 間の増大により空間の分解能が上がり,分類に有効な特 徴量が増加したからと考えられる.

しかし,被験者2の場合,どのノード数においても従 来法の正当率を上回らなかった.これは,被験者1と比 べ従来法の正当率が低いことからも,各メンタルタスク における脳波データの類似性が低く,それがデータベク トルの距離を用いる SOFM において顕著に現れ,特徴を 損失したと考えられる.

そこで,どの被験者に対しても分類性能の向上を可能 にする,汎化能力の高い SOFM による特徴抽出法につい て検討する.

5.4 パラメータによる分類性能への影響の解析

SOFM では、学習率・近傍距離を決める近傍関数・学 習回数と、設定すべきパラメータが多くある。今節では 各パラメータの改変による被験者毎の分類性能への影響 について調査する.

下の図7~図9は、被験者1,2それぞれの学習率の初 期値,近傍関数の初期値,学習回数を変更した際の正答率 である.なお、変更するパラメータ以外の数値は前節の シミュレーションと同条件,MLNNの入力となる SOFM のマップサイズは225(15×15)とした.以下は改変しない パラメータの共通の値である.

- · 学習率 (初期值):0.1
- ·近傍距離(初期值):5
- · 学習回数:500

図 7: 学習率の初期値 (左:被験者 1,右:被験者 2)

図 8: 近傍距離の初期値 (左:被験者 1,右:被験者 2)

図 9: 学習回数 (左:被験者 1, 右:被験者 2)

上図より,被験者1はどのパラメータにおいても正答 率は従来法を越えており,パラメータ改変による影響は見 受けられない.それに対し被験者2は分類性能が学習率 と近傍距離に依存していることが分かった.被験者2の データには,狭い範囲で大きく学習させる方が正答率は 上昇する傾向にある.学習回数の変化に対して傾向が見 られないのは,学習率と近傍距離の関数が,学習回数が 変わっても一定の勾配で減少する関数に設定しているか らだと思われる.

この結果を踏まえて,被験者2のデータに適したパラ メータに変更してシミュレーションを行なった結果が表6 である.

- · 学習率の初期値:0.1 → 0.6
- ・近傍距離の初期値:5→3
- · 学習回数:500 → 800

タスク	В	М	L	R	С	平均
正答率 [%]	84	78	52	78	82	74.8
表 6: パラメータ最適値での分類結果 (被験者 2)						

これにより、パラメータ改変により被験者2の正答率を 8%上昇させることが出来たが、従来法よりは若干低い.

5.5 SOFM の距離尺度と近傍範囲の改良

被験者2のSOFMによる特徴抽出で分類性能が低くなるのは、SOFMの学習がうまくいかず、マップ上で同じメンタルタスク毎にグルーピングしていないからである.

そこで,SOFM の距離尺度を変更することで,被験者 2 に対してもうまくクラスタリングできるのではと考え, 以下の3 種類を試みた.

マンハッタン距離 (Manhattan Distance)

$$d_{Man}(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{n} (a_i - b_i)$$

標準ユークリッド距離 (Standard Euclidean Distance)

マハラノビス距離 (Mahalanobis Distance)

$$d_{Mah}(\mathbf{a}, \mathbf{b}) = \sqrt{(\mathbf{a} - \mathbf{b}) \sum_{COV}^{-1} (\mathbf{a} - \mathbf{b})^{T}} \left(\sum_{COV} = 分散共分散行列 \right)$$

標準ユークリッド距離は,値の分散を標準化した上で ユークリッド距離であるため,ある次元でのデータの差 異が非常に大きく,それが全体の距離の差異に大きく影 響するということがなくなる.マハラノビス距離では分 散共分散行列を掛け合わせることで次元間の相関の影響 を受けにくくしている.

次に,近傍領域の形状を変更する.ここまでは正方形 形状であったが,ここでは正方形型のノード配列をベー スに,六各格子型・円環面型の2種類を検討してみる.六 各格子型は正方形に比べ円形に近く,より近傍という概 念で近いノードを学習の対象とする.円環面型は,重み の初期値や学習順等により本来距離が近いはずのデータ がマップの隅で固定されることを解消する.それぞれの 領域の図解を図11に示す.

図 11: 近傍領域の形状

以上の距離尺度と近傍領域についてシミュレーションを 行なったものを表7,表8に示す.なお,シミュレーショ ン条件はパラメータ改変前の第5.3節,第5.4節と同じと する.表中に数字は正答率を表す.

正答率 (%)	正方格子	六各格子	円環面
ユークリッド距離	88	88	87.6
マンハッタン距離	87.2	86.8	88.8
標準ユークリッド距離	86	87.2	88.4
マハラノビス距離	77.6	83.6	74.8

表 7: 距離測度と近傍領域の改良(被験者 1)

正答率 (%)	正方格子	六各格子	円環面
ユークリッド距離	66.8	67.6	69.6
マンハッタン距離	68.8	67.6	63.6
標準ユークリッド距離	64.4	70.2	70.8
マハラノビス距離	65.2	63.2	61.2

表 8: 距離測度と近傍領域の改良(被験者 2)

距離測度と近傍領域の組み合わせ毎に見ると,被験者 1 は改良前の方式に比べて正答率は余り上昇しておらず, マハラノビス距離では全ての組み合わせで大幅に精度が 低下した.円環面型においてわずかながら正答率は向上 した.被験者2は多くの組み合わせで改良前より正答率 は上昇した.特に標準ユークリッド距離・円環面型の時で 4%上がった.この組み合わせは被験者1においても向上 が見られた.

6 まとめ

脳波の高速フーリエ変換と,他次元データのクラスタ リング手法である自己組織化特徴マップ(SOFM)を用い た特徴抽出を行なう MLNN による BCI において,分類 性能向上を目的とした SOFM の解析と改良を行なった.

2人の被験者に対してシミュレーションを行なったとこ ろ,元のデータにより特徴抽出性能が異なり,従来法と 比べ分類性能が被験者により上昇/下降することが分かっ た.次に,パラメータの解析を行なうことで被験者毎に 違う特性を持つことが分かり.パラメータの最適化によ り性能が低下した被験者において正答率が8%向上した. また,データの写像空間へのマッピングの際に重要とな る距離尺度と近傍領域をより実データのクラスタリング に適した形に変更し,このBCIにおける最適な構成は標 準ユークリッド距離・円環面型近傍領域であることが分 かった.

参考文献

- G.Pfurtscheller, C.Neuper, C.Guger, W.Harkam, H.Ramoser, A.Schlögl, B.Obermaier, and M.Pregenzer, "Current trends in Graz braincomputer interface(BCI) research", IEEE Trans. Rehab.Eng., vol.8, pp.216-219, 2000.
- [2] B.Obermaier, G.R.Muller, and G.Pfurtscheller, "Virtual keyboard" controlled by spontaneous EEG activity," IEEE Trans. Neural Sys. Rehab. Eng., vol. 11, no. 4, pp.422-426, Dec. 2003.
- [3] C.Anderson and Z.Sijercic, "Classification of EEG Signals from Four Subjects During Five Mental Tasks," In Solving Engineering Problems with Neural Networks: Proceedings of the Conference on Engineering Applications in Neural Networks (EANN'96), ed. by Bulsari, A.B., Kallio, S., and Tsaptsinos, D., Systems Engineering Association, PL 34, FIN-20111 Turku 11, Finland, pp.407–414, 1996.
- [4] G.Pfurtscheller and C.Neuper, "Motor imagery and direct brain-computer communication," Proc. IEEE, vol. 89, no. 7, pp.1123-1134, July 2001.
- [5] J.R.Millan, J.Mourino, F.Babiloni, F.Cincotti, M.Varsta, and J.Heikkonen, "Local neural classifier for EEG-based recognition of metal tasks," IEEE-INNS-ENNS Int. Joint Conf. Neural Networks, July 2000.
- [6] K.R.Muller, C.W.Anderson, and G.E.Birch, "Linear and non-linear methods for brain-computer interfaces" IEEE Trans. Neural Sys. Rehab. Eng., vol. 11, no. 2, pp.165-169, 2003.
- [7] J.R.Millan, "On the need for on-line learning in brain-computer interfaces," Proc. IJCNN, pp.2877-2882, 2004.
- [8] G.E.Fabiani, D.J.McFarland, J.R.Wolpaw, and G.Pfurtscheller, "Conversion of EEG activity into cursor movement by a brain-computer interface (BCI)," IEEE Trans. Neural Sys. Rehab. Eng., vol. 12, no. 3, pp.331-338, Sept. 2004.
- [9] C.W.Anderson, S.V.Devulapalli, and E.A.Stolz, "Determining mental state from EEG signals using neural networs", Scientific Programming, Special Issue on Applications Analysis, vol.4, no.3, pp.171-183, Fall, 1995.
- [10] http://www.cs.colostate.edu/eeg/
- [11] 稲垣清人,中山謙二,"ニューラルネットワークによる脳波 に基づくメンタルタスクの分類",電子情報通信学会,信学 技法, Vol.105 No.174 pp.25-30, SIP2005-54, 2005.07.
- [12] K.Nakayama and K.Inagaki, " A brain computer interface based on neural network with efficient preprocessing", Proc.IEEE, ISPACS2006, Yonago, Japan, pp.673-676, Dec.2006.
- [13] 須藤一郎,湯野智己,田向権,関根優年,"適応型木構造 SOMの提案と画像分類への応用",電子情報通信学会,信 学技法.
- [14] T. コホネン, "自己組織化マップ 改定版", シュプリンガー・ フェアラーク東京,2005.