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ABSTRACT

A training data prunung method for a multilayer neural networks (MLNNs) is proposed in this
paper. This method selects the minumum number of training data that gurarantee generality of the
MLNN. For this purpose, two methods are used. One of them is a pairing method, which selects
the training data by finding the nearest data of the different classes. Data along the class boundary
in data space can be selected. The other method is a pairing and training method, which used a
semi-optimum network in a training process for the data selection. Since the MLNNs classify data
based on the distance from the hyperplanes, the selected data can locate close to the class boundary.
The proposed methods can be applied to both off-line training and on-line training. The proposed
methods are also investigated through computer simulations,

1. Introduction

Recently, a multilayer neural network (MLNN) is
used in a signal processing field. In this field, some pat-
tern classification or non-linear process is required. In
this paper, the MLNN trained by supervised learning
algorithms named the error back-propagation (BP)[1].
The generalization performance is important for the
signal processing by the MLNN, because it is always
guaranteed for linear signal processing methods, b how-
ever, it is not guaranteed for the MLNNs.

One of the main interests of the supervised learring
algorithms is how to select the training data. A huge
amount of the training data may guarantee generality
of the MLNN. On the other hand, it will require a
very long training time. Therefore, it is desirable to
reduce the number of the training data while main-
taining generalization. Cachin[2] proposed the error-
dependent repetition. Presentation probability of the
training data is proportional to the MLNN output er-
ror. However, the entire data are used in the training
process.

In chis paper, we propose two methods to select
the efficient training data, with which generalization is
guaranteed. The selected data can locate around the
decision boundary between classes. This method can
be applied to reduction in data memory and computa-
tions of the off-line training, where a sufficient number
of training datra can be obtained in advance. Futher-
more, it will be useful for an on-line training, where all
training data can not obtained at the begining, rather

they are gradually increased.

Efficiency of the proposed method is investigated
through computer simulations. The BP algorithm is
used to train the MLNN. Two kinds of problems are
employed as examples.

2. Multilayer Neural Network

In this paper, a two-layer MLNN is used to classify the
data. N samples of a piece of data, that is the input
vector £ = {z(i},i = 1 ~ N}, is applied to the input
layer. The ith input unit receives z(i). The connection
weight from the ith input to the jth hidden unit is
denoted w;;. The input potential net; and the output
y; of the jth hidden unit are given by

N
net; = Z wa; (i) + 6; (1a)
i=1
y; = fu(net;) (1b)
fH(netj) = 1-¢ ! (IC)

1 + e-ne!,—

where, fy(-) is an activation function in the hidden
layer and 8; is a bias. The input potential net; and
the output yi of the kth output unit are given by

J

nety = Z wiry; + 6k
i=1

(2a)
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(2b)
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v = folnety)

folrets) = o=

where fo(-) is an activation function in the output
layer.

The number of output units is equal to that of the
classes. The MLNN is trained so that a single output
unit responds to one of the classes.

3. Geometical relation of input and out-
put

Input of the jth hidden unit is expressed by Eq.(1a).
The input space can be separated into two regions by a
hyperplane formed by net; = 0 in Eq.(12). A distance
between this hyperplane and the input vector  is given
by

N .
Tae vz +5|  nety]

1) TN

w; = {wj,i=1~ N}

dj=

(3a)
(3b)

{lw,]| is an L, norm of the weight vector w;. Then
the input potential net; is proportional to the distance
d;. The activation function Eq.(lc) is 2 continuous
monotonically increasing function, then the hidden unit
output y; is also continuous monotonically increasing
with respect to the distance d;. However, y; is not a
linear function of the distance.

The output of the output unit yj is separated by the
ranges of y, > 0.5 and yx < 0.5. The input potential
neti = 0 provides a decision boundary. This is called
a network boundary in this paper. The class boundary
means the boundary of the input data classes. If the
training converges, the network boundary will agree
with the class boundary. Then a distance from the class
boundary to the input data is related to |yz — 0.5). In
this case, the input potential of the output unit net; is
also related to the distance.

In conclusion, |y, — 0.5| and [net;| are continuous
functions with respect to the distance between the data
boundary and the input data.

4. Pairing Method for Training Data Se-
lection

The proposed data selection method combines a train-
ing process and a pairing method. In this section, a
pairing method is first described.

In this paper, two classes X; and X7 are taken
into account for convenience. However, the proposed
methed can be applied to more than two classes.

In the pairing process, the nearest data of the differ-
ent classes evaluated using the Buclidian distance are
selected. Let X; and X7 be sets of two data classes,
and z; and =z, be elements of them. z; and z; are
paired with each other through the following steps.

Step 1: Select z,; (or z;) from X, (or X,) randomly.

Step 2: Select 2§ (or z¥) from X5 (or X 1), which has
the shortest distance to the z; (or z3), selected
in Step 1.

Step 3: Select z§ (or z§) from X; (or X3), which
has the shortest distance to 2§ (or zf), selected
in Step 2.

When all data are selected from X; (or X3) in Step 1,
the pairing process is completed. Otherwise, return to
Step 1, and repeat the above process. In this process,
the same data will not be selected. Finally, the data
z§ and 2, selected based on the distance, are included
in the reduced data set.

If the class boundaries in the data space are based
on the distance, the data located close to the boundary
can be detected by this method.

5. Data Selection Method Using Training
and Pairing

5.1. Data Selection Algorithm

This method combines the training and the pairing as
follows:

Step 1: Some number of the training data are ran-
domly selected from Xy and X5 . Let the sets of
the selected data be X and X3 .

Step 2: Train the MLNN using the data in X7 and
X3 .

Step 3: Select the data, with which the network out-
put errors have relatively large error. Let these
data be zf and «§.

Step 4: Select the data zf{ and =z} from X] and X3,
which have the shortest distance to z§ and =,
respectively.

Step 5: Select the data =§° and 23° from X¥ and X2,
which have the shortest distance to = and zf,
respectively.

A set of 2§, z§ and z{°, z§° will be used in the next
training process. Replace the data in X] and X3 by
the new training data, and return to Step 2.

When new data are provided, they are included in
X7 and X7 . The remaining data of X; and X, can
be also used for this purpose. If the number of the new
data is large, some number of the data may be selected,
and are included in X7 and X . After that, return to
Step 2.

The data selected in Step 3 satisfy

X1 ={z1ly(z1) < a4, t =1}
X3 = {=z2ly(z2) > a_,t = 0}

(42)
(4b)

where y(-) express the output, t is the target, and a,
and a_ express some levels, for instance 0.7 and 0.3,
respectively.
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5.2. Data Distribution

Purpose of the training in Step 2 is to find the data,
which locate close to the class boundary, with less
computations. Therefore, the training is stoped at the
middle stage in the training process using some crite-
rion. In subsection 7.2.2, this criterion for an off-line
training is described. Even though the training is not
completely converged, the data, which locate close to
the class boundary can be detected using the output
error. The details are described in the following.

For convenience, a two-dimensional pattern classifi-
cation given by Fig.l (a) is employed. It is assumed
that the triangle shown in Fig.1 (b) is the network
boundary formed in Step 2. The data inside the tri-
angle corresponds to Class 1, and the outside Class 2.
In this case, the regions are further divided into A, B,
C and D as shown in Fig.1 (b). This means that the
data locate in B and D are exactly classified into Class
1 and Class 2, respectively. Furthermore, the Class 1
datain A are miss-classified into Class 2 and the Class
2 datain C are mis-classified into Class 1, respectively.

{a) {b}

Fig. 1: (a) Class distribution, (b) Classification result by not well
achieved network.

Following the process in Step 3, the data in A
and C will remain due to large output error by miss-
classification. Further, the data locate close to the
network boundary, in B and D are also detected due to
relatively large errors. The error is highly related to the
distance from the boundary. However, it is not always
proportional to the distance. This will be discussed
in Sec. 7.2.2. Therefore, the data, with which the
output error is relatively large, locate near the network
boundary, that is the triangle, at least.

However, the data, which locate close to the pet-
work boundary, do not cause large output error. There-
fore if the data z{ and z§ are only selected, the effi-
cient data, which locate close to the boundary, will be
missed. Figure 3 shows an example, where the data lo-
cate in the shaded parts are only satisfy the conditions
Eq.(42) and Eqg.(4b), and are detected.

For this reason, the pairing method is combined.
The data in the different classes locate close to z{ and
z§ can be found. They are denoted =5 and 2§ as shown
in Step 4, respectively.

Fig. 2: Example of two-class classification.

6. Training Data Selection in Off-line and
On-line Trainings

The proposed data selection methods can be applied
to both off-line training and on-line training [3]. In the
off-line training, all the data are given at the beginning
of the training. If a large amount of training data is
available, the data selection is needed to reduce the
training time. In the on-line training, the training data
are not given all together, but are given successively.
Furthermore, they may change continuously. If the
data successively received are all accumulated, then the
number of the data will be extremely large. Therefore,
in this application, the training data selection is very
important.

7. Computer Simulation

Two-dimensional two-class classification is employed
for computer simulations. The number of input unit
N is 2, and the number of output unit A is 2. Then,
The data is X = {X,;,X,} and the input data is
z = {z(i),i = 1,2} .

Figure 3 shows a concept of the problems. One of
the classes is shown as shaded region, and the other is
dotted region. White region between the classes shows
a gap, so there is no overlap.

{a) Circle in Square (b) Sinusoidal in Square

Fig. 3: Concept of problems. (a) Circle in square, (b) Sinusoidal
in square.

For the training, learning-rate parameter 5 is 0.1,
and momentum coefficient & is 0.8. These are decided
by experience. Circle in square is called problem 1, and



Sinusoidal in square is called problem 2 in the following
sections.
In problem 1, two classes are defined as follows:

Xy = {z|=(1)* +2(2)* < (r - 1*}
X ={z|z(1)* +z(2)* > (r +7)?)

(5a)
(5b)

here, r is the radius of the circle and is 0.39. v is the
width of the gap, and is 0.02.
In problem 2, two classes are defined as follows:

X, = {z|Asin(27 - 2(1)) < z(2) - v}
X2 = {z|Asin(27 - z(1)) > z=(2) + 7}

(6a)
(6b)

where, the A is the amplitude and is 0.22.

7.1. Computer Simulation Conditions

The number of data for each class is 1000. Six hidden
units are used. Two hundreds of data for each class are
selected randomly from 1000 data. These are used in
following simulations.

7.2. Off-line training

7.2.1. Pairing Method

For off-line training, pairing and training methods are
used. Figure 4 shows randomly selected data, and
Fig.5shows the data found by pairing method. From
Fig.5, the class boundary is formed by data properly.
Sixty-five data are selected for each class.

.t

Fig. 4: Randomly selected data.

The MLNN is trained with selected data. The stop-
ping criterion is 0.001 in the mean square error (MSE)
at the output layer. Iteration of 23763 is needed for
convergence.

7.2.2. Pairing and Training Method

The initial training is stopped at the MSE of ¢ <0.05.
The thresholds, a is 0.73 and a_ is 0.27, and are equal
to ¢ of 0.073. In problem 1, 207 of data are selected
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Fig. 5: Selected data by pairing method.

from Class 1, and 164 from Class 2. From Class 1 and
Class 2, 116 and 150 of data are selected in problem 2.

Figure 6 shows the results. From these figures, the
boundary is detected properly.
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(a)Circle in square.
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(b)Sinusoidal in square.
Fig. 6: Selected data

For stopping the training, four hundreds of val-
idation data are used to have a consistent stopping
criterion for conventional method and proposed one.
The validation data are a subset of the entire data set.
The network output error is calculated for validation
data every iteration. The stopping criterion ¢ using the
validation data is € < 0.001. Table 1 shows the results.
In the table, computational complexity of the conven-
tional method is set to be 1.0, and the computation
complexity of the proposed method is represented as a
ratio of proposed method of conventional one. From
this table, the computational complexity is reduced by

3




this process. In this table, computation complexity is
defined as the number of data multiplied by the number

of itarations of the training.

Table: 1: Comparison of computational complexity between con-

ventional and proposed training.

Prob. 1 Praob. 2
Conv. | Proposed | Conv. | Proposed
Init. 0 134 0 18
Epoch 2444 4394 89 320
N of data | 2000 114 2000 62
Comp. 1.0 0.10 1.0 0.14
Init.: Epoch of initial training.

N of data: Number of data.
Conv.: Conventional method. Comp. Computation

Figure 7 shows relation among the distance and the
output unit output. The MLNN in step 2 of Problem
1 is used. The input data of (2} is z(2) = 0 and (b)
is ¥(1) = z(2). In the figures, the horizontal axis is
the distance from the origin of the data space to a
data. The vertical axis is the output of the output
unit to the input data of the horizontal axis. From the
figures, {b) has much steeper slope than (a) near the
class boundary, that is at & 4.0 in the horizontal axis.
Then data locate on (a) outputs different value from
the data on (b) for the same distance as mentioned in
subsection 5.2.

otedanre

{b) Input data is z(1)} = =(2)

Fig. 7: Unit output and distance in data space

7.3. On-line training

The on-line training is simulated using a partial data
of the problems. Problem 1 is used in this simulation.
Entire data X is separated into three sets as described
below.

(7a)

X = {z|z(2)>0.167}

-Xmid
Xdoum =

{z|-0.167 < z(2) < 0.167}
{z|z(2) € -0.167}

(7h)
(7c)

FEach data subset includes 333 data.

X up is used as the training data of Step 1. X i
and X gown are used mew training data in training of
Step 2 of Sec.5. The stopping criterion ¢ in Step 1 is
0.05, and 0.01 for stop the training, respectively. The
thresholds a4 for all steps are 0.73.

Figure 8 shows the result of on-line training using
selected data. The training is converged and their per-
centage of correctly classified are 100 % for entire data
set. The boundary is also detected properly.

Glasr 3 ®
Glase 3 ¢

(a) Training data of Step 1. Upper one third region is selected
data and middle region is newly given data.
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(b) Training data of step 2. Upper two third regions are selected
data. MLNN is trained with data of (a). Rest of the region is

newly given data.

(c) Selected data of Step 5. MLNN is trained with data of (b).

Fig. 8: Selected data: Problem 1.
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8. Conclusion

The training data selection methods used in the MLNN
have been proposed. Pairing method has used the Eu-
clidean distance to find sets of the nearest data to the
initially randomly selected data. The training method
has selected the data based on the network boundagy of
the MLNN. These methods are combined in the paring
and training method. Validity of the training methods
has been given, and it was confirmed that the training
method never lost the data near the class boundary
by using pairing method. The training has converged
slowly with the data selected by the pairing method.
Because, the data of two classes locate next to each
other, then the same error is produced for different
class data. Proposed methods have been applied to
the applications. One of them is reducing the training
computations of the off-line training, and the other is
that of the on-line training. The training has been
converged by the paring method and training method.
The computations to converge the training has been
reduced. Training method is also applied to the on-line
training. In this case, data are selected from the partial
data. The training has been converged. Therefore, pro-
posed methods are supported by the simulation results.
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