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Abstract

This paper investigales some possible problems of
Cascade Correlation algorithm, one of which is the
zigzag oulputl mapping caused by weight-illgrowth of the
adding hidden unit. Without doubt, it could lead to de-
teriorate the generialization, especially for regression
problems. To solve this problem, we combine Cascade
Correlation algorithm with regularization theory. In
addition, some new regularization lerms are proposed
in light of special cascade structure. Simulation has
shown that regularization indeed smooth the zigzag out-
put, so that the generialization is improved, especially
for funcilional approzimation.

1. Introduction

Although feedforward multilayer Neural Network
model has been popularized for a wide variety of clas-
sification ( pattern recognition) and regression ( func-
tional approximation ) applications since it was pro-
posed by using the famous supervised learning algo-
rithm: Backpropagation Algorithm(1), there exists one
key issue: how to configure a neural network in order
to achieve the approximatly optimal performances (ef-
ficiency, generalisation, representation ability, scaling,
implmentation etc.). It is known that these perfor-
mances are greatly related to the neural network topol-
ogy. For instance, ”undertraining” will occur if the
size of topology is too small to learn all training data,
whereas “overtraining” will deteriorate the generaliza-
tion if the size is so large to learn plenty of noise. If only
adopting static learning algorithm (e.g., BP algorithm
or its variant QP algorithm (2]), one must determine
the optimal Neural Network toplogy prior to training
process by the method of trial-and-error. Needless to
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speak, it isn’t expected because it seems like handcraft
art rather than scientific design.

Aiming at the above problems, dynamic Neural Net-
works have been attractive, which incorporate the de-
termination of topologies into the training process,
mainly in two ways. One approach, refered to as de-
structive (pruning) technique, is to start with a large
size network (usually one has to guess) and prune
it either using sensitivity calculation methods, such
as OBD, which are used to prune the topology af-
ter training is complete and then retrain repeatedly
to achieve the expected performance; or using regular-
ization methods, such as weight decay and weight elim-
ination, which add an extra term to the error function
to prune the topology during training to improve the
generalization ability(5].

In contrast, another approach, refered to as con-

structive (growing) technique, is to begin with a small
size network (usually with no hidden units) and then
gradually add hidden units under the control of some
rules to a proper size so that the optimal performance
can be achieved[8]. By comparing them, we can find
the following facts:
(1) Destructive method still requires an estimate of the
relatively large size, and the initial network can take a
long time to train. In addition, without the proper con-
trol of pruning, unhealthy phenomenon, such as “un-
derpruning” or “overpruning”, could appear. But the
process of “pruning” is suitable for various kinds of
topology, and thus is more flexible.

(2) Constructive method frees one from “guessing” a
large enough initial NN configuration, and requires less
computations than destructive method since it uses a
small network most of time. However, it must be em-
phasized that the resulted topology generated by con-
structive method usually has special architecture, such
as cascade and upstart architecture, since the same
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connection strategy is throughout the whole procedure
of growing, so that it has limitations when applying
to practical problems.* Similarly, without proper con-
trol of growing, it could lead to “overgrowth”, which is
easy to generate oversized topology, or “undergrowth”,
which is easy to generate too small network. In both
cases, the generalization will be decreased.

Whereby, we can’t assert rashly which is better. In
fact, combining these two methods will be more ap-
propriate. For example, it is nature to incorporate the
pruning technology into the growing method in order to
overcome overgrowth. Accordingly, in this paper, we
will concretely analyze the weight-illgrowth action of
cascade correlation algorithm, which is one of represen-
tative constructive algorithms, and use regularization
to avoid this phenomenon for improving generalization.

2. Analyse of Original Cascade Correla-
tion Algorithm

The original Cascade Correlation algorithm was pro-
posed by Fahlman & Lebiere [14]. For the sake of clar-
ity, we use flow-chart to describe the Cascade Correla-
tion algorithm as Fig.(1). In Fig.(1), concrete contents

END

Fig. 1: The Original Cascade Correlation Algorithm

for each step are listed below:

Step A: Initializing NN

1. determining the I/O units according to the
practical problem.
2. input units are fully connected to output units.
3. initializing all connection weight values.

Step B1l: Calculating the error over an epoch by

E=3Y oy~ top)’ 1)
o,p

or other error measures.

Step B2: Judging whether the performance, which
depends on training error, is smaller than preset
desirable value or not.

Step B3: Judging whether the overall (output units)
stopping criterion, which depends on overall pa-
tient period and overall patient coefficient, is sat-
isfied or not.

Step B4: Updating all weights connected to the out-
put units by gradient descent, to minimize the cost
function described by Equ.(1).

Step C1: Initializing candidate
1. connect all input units and previously installed
hidden units to the candidate.

2. initializing the new weights.

Step C2: Calculating the correlation magnitude over

an epoch by

C= Z Z(yp - g)(eop - C_o) (2)
L4 4

Step C3: Judging whether the local (adding hidden
unit) stopping criterion, which depends on local
patient period and local patient coefficient, is sat-
isfied or not.

Step C4: Updating the weights connected to the
adding hidden unit by gradient ascent, to maxi-
mize the objective function described by Equ. (2).

Step BC: Installing the trained candidate, this is the
interface between B series and C series.

1. all input connections to the candidate are
frozen.

2. the candidate is connected to all output units.
3. initializing the newly connected weight values.

In fact, Cascade Correlation algorithm combines two
key ideas: The training builds up cascade structure
as the Tower method and the hidden unit grabs the
output residual errors greedily similar to the Upstart
method. From Fig.(1), we may know that the training
process can be divided into two parts: one is the train-
ing of hidden unit, which maximizes the correlation
between the output of hidden unit and the sum of the
residual errors at the outputs and then makes the in-
coming connections to the new hidden unit frozen; an-
other is the training of output units, which only trains
a layer of connections relating to output units. Due to



the following distinctive features: full short-cut connec-
tions, single hidden node per layer, two-stage training,
freezing technology etc., it has several advantages over
existing constructive algorithms: it requires no back-
propagation of error signals through the connections of
the network since only one layer is trained at each train-
ing stage, and therefore learns very quickly, moreover
the moving target problem for the Backpropagation al-
gorithm shoulde be reduced [14], the step-size problem
and the problem of oscillating around the global mini-
mum for the Backpropagation algorithm is avoided by
dynamically adding new hidden units to the network,
which means that the algorithm won’t get stucked at
a local minimum and oscillate around the global min-
imum because the residual error will cause the algo-
rithm to add a new unit, changing the weight space([8].
Whereas, some strategies of the cascade correla-
tion algorithm which brings up the above advantages,
meanwhile, cause some possible problems as follows:
(1) In fact, maxmizing the covariance has a tendency
to update weights to overcompensate errors, which we
refered to as weight-illgrowth. This makes the algo-
rithm normally generates undesirable zigzag hidden
units mapping and thus results in unsmooth zigzag
classification/regression surface, so that the algorithm
works better for classification tasks than for regression
tasks.
(2) Single-node cascaded structure results in a network
that can provide very strong nonlinearities. But it can
be a disadvantage if the practical problem doesn’t re-
quire such strong nonlinearities or no suficient number
of training examples are available to control it[12].
(3) The advantage of the freezing method is the rela-
tively small retraining effort required when a new el-
ement is introduced. However, the method can not,
in general, achieve the desired solution. The reason
is that when an extra degree of freedom is introduced
(e-g., by adding a new weight to the network), holding
the existing network values constantly will only find the
solution in an affine subset of the existing weight space.
Additional degrees of freedom (extra nodes or weights)
can be introduced to allow this affine subset to pass
through a global minimum point ( in effect, shifting
some of the previously fixed coordinates). But because
of the partial duplication of effort involved (i.e., two or
more weights are needed to determine the value of a
single dimension), such a network can not be minimal
in size[4].
(4) The technique of full interconnection for each hid-
den unit leads to deep networks which have many lay-
ers. In addition, the fan-in of hidden units rises linearly
with the size of the network. Hence, scaling ability and
implementation degrade as a network grows(9].

3. Regularization and Generalization

Regularization theory was firstly proposed by
Tikhonov in 1963 in the context of functional approxi-
mation. The spirit of regularization is to stabilize the
solution by means of some auxiliary functional that
embeds prior information, e.g., smoothness constrains
on the input-output mapping, and thereby make an ill-
posed problem into a well-posed one. The principle of
regularization may be stated below:

Find the function F(z) that minimizes the cost func-
tion, defined by

O(F) = &,(F) + A8 (F) (3)

where ®,(F) is the standard error term ( e.g., the mean
squared error), ®.(F) is the regularizing term, and A
is the regularization parameter.

It is well known that the generalized BP algorithm
uses regularization term ( called by complexity penalty
term ) to improve generalization and the RBF Neural
Network is also based on regularization theory. Some
papers furtherly examing the relation between gener-
alization and regularization in Neural Network have
been in literature. J. Moody (1992) presented an anal-
ysis of how the expected test set error (generalization)
relates to the expected training set error for nonlinear
learning systems, such as multilayer perceptrons and
RBF neural network, and attained an important re-
sult which gives the following relation among general-
ization, training error and regularization for nonlinear
learning system[11]:

Elerest(M)eerEletrain(We + 20, Pef::(/\)' @

where, £, €' represents training set and test set respec-
tively, n is the size of the training sample, o2 ¢ is the
effective noise variance in the response variable, A is a
regularization parameter, and P.s()) is the effective
number of parameters in the nonlinear model. The ex-
pectations E are taken over all possible training sets £
and test sets &’ respectively.

It should be noted that if given appropriate regular-
ization term, at the right side of the above equation,
generally, the first term increases with A, while the sec-
ond term decreases with A. Furthermore, whenever
crf” > 0 and n < oo, there should exist Agprimar > 0
such that the generalization is minimized.

Therefore, aiming at the first one of the problems ex-
isting in Cascade Correlatin algorithm described above,
we suggest that regularization will help to settle down
this problem, and whereby improve generalization if
incorporating it into Cascade Correlation algorithm.
But, so far, there isn’t detailed research for regulariz-
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ing Cascade Correlation algorithm yet. In the sequel,
we will addrese this problem and give empirical study.

As we have known,  Cascade Correlation algorithm
possess two-stage training: one is the training of new
adding unit; another is the training of output units.
Hence, there exits three possible regularization strate-
gies: the first is adding regularization term into the
first stage similar to BP algorithm, which is refered as
to “overall regularization”; the second is adding regu-
larization term into the second stage, which is refered
as to “local regularization”; and the third is combin-
ing both of them. Comparing them, we suppose that
the second is the most appropriate, because the zigzag
mapping is mainly caused by the action of the hidden
units due to using the greedy criterion and it is diffi-
cult to determine the optimal pair of A simultaneously.
Therefore, we add the regularization term into Equ.(2),
so that Equ.(2) can be rewritten as:

C= E Z(yP - g)(eop - &) - A® (W) (5)
° 14

4. Empirical Study

In our simulation, in addition to some known typical
regularization terms, we introduce two new regulariza-
tion terms in light of the special cacacde structure.
Regularization Term(1]

This form of regularization term is usually refered to
as representative weight decay[Plaut et al., 1986], be-
cause it gives each connection weight w;; a tendency to
decay, even though it can not make the weights decay
constantly, whose expression is:

Ae(W) =2 (wd) (6)
(55)

Clearly, it penalizes large weight much more than small
weight and eventually tend to obtain a weight vector
which possess many small components.
Regularization Term(2]

To make small weight decay more quickly to zero
than large one, the following regularization term was
proposed by [13].

28 (W)=Y : Wi " (7

Regularization Term[3]

Ishikawa (1989) presented regularization term with
constant decay rate, which is called as weight forgetting
by him. Its expression is:

2 (W) =2 |wijl (8)
(i5)

This form remedies the deficiency that regularization
term(l] can not make unnecessary connections fade
away and a skeletal network emerges[6].

In fact, noting the speciality of cascade structure,
we may put forward some new regularization terms,
for instances below:

Regularization Term(4]
If the practical problem requires stronger nonlineari-
ties, we may adopt the following regularization term:

ALY
A% (W) = —5- > lwijl (9)
toG)

Where, L; denotes the depth of hidden unit ¢, while
L;; denotes the length of the connection from node ¢
to node j.

This form tends to make hidden units absorb- the
latest information from the nearest neighbours, so that
the higher order feature detection can be obtained.
Regularization Term([5]

If the practical problem discourages strong nonlineari-
ties, in contrast to regularization term[4], the regular-
ization term is as follow:

A(Li = Lij +1)?
sawy= MLt s o)
t (i5)

Obviously, it supports this assumption that the latest
information from the nearest neighbours has become
the high order feature detection which can hardly be
refined.

To test the effectiveness of our ideas, we have done
a simulation on classification problem and regression
problem respectively. For the sake of exactness, we
have made use of the program code based on the orig-
inal Casacde Correlation code on a ftp site, since it is
public.

4.1. Classification Problem

In this experiment, we adopt two-spirals problem,
since it has been reported that the Cascade Correlation
algorithm has achieved good performance in the bench-
mark in which Back Propagation algorithm fails. The
comparative results are shown below, The performance
measures are ensemble-averaged over 10 indenpendent
trials, using a sigmoidal activation function for both
output units and hiddenunits, a pool of 8 candidate
units, and the maximum learning iteration numbers
200 for learning both the hidden-layer weights and the
output-layer weights.
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Table: 1: Comparison of Percent Correct for two-spirials problem

CasCor Aoptimai | H.Us | Epochs | Corr. | M.Corr.
Original 12.9 103.8 95.0 97.42

Regu.[1] | 0.000008 | 13.9 118.5 96.1 97.42
Regu.[2] | 0.000005 | 13.0 110.8 95.4 97.94
Regu.[3] | 0.000009 | 12.6 104.5 95.9 99.48

Regu.[4] | 0.000010 | 13.3 108.4 95.9 97.94
Regu.[5] | 0.000008 | 13.7 119.1 96.0 97.94
H.U.s: Hidden Units; Corr.: Percent Correct

M.Corr.: Maximum of Percrnt Correct among 10 Trials
Regu.: Regularization

4.2. Functional Approximation

With regard to functional approximation, when we
assess which is a 'good’ or a ’poor’ functional approx-
imation if we are to compare fitness, some criterion is
necessary. A Adams & S Waugh (1995) suggested an
intuitive concept that a function that goes near the
training points and varies smoothly between them is
better than one which fits these points as well or bet-
ter but which varies widely from the linear approxi-
mation between them. For the sake of simplicity, the
simple function f(z) = 37 is used for the compar-
ative simulation, which is a peak with a top but has
far wide wings. We have known that this function can
be approximated well with a 2:2:1backpropagation net-
work (one of the inputs is the constant bias input) and
poorly fitted with the original Cascade Correlation al-
gorithm({10]. Eleven pairs of equally spaced values are
used as the training points with x varying from -5 to
+5. The interpolation (generalization) capabilities are
tested by evaluating the function at 101 points over the
same range and finding the root mean square error.

5. Conclusion and Discussion

We have made a comparative emperical study for
classification and regression problem. From the sim-
ulation of two-spirals problem, the improvement of
generalization is not significant, because sometimes
the zigzag output mapping affects little the classifi-
cation results. Nevertheless, it is worthwhile to no-
tice that, using regularization term(3] reduces the hid-
den units required and acquires the good percent cor-
rect (99.48%). But, for the regression problem, the
effect of the regularization is evident. As what we have
seen from Fig.2(a), the output curvature of the orig-
inal cascade-correlation algorithm has obvious zigzag
phenomenon, so that the sum squared error is 0.358;
hidden units are 5. But after adding regularization

term, smoothness evidently emerges, resulting in sum
squared error decreasement. Furtherly, as what we ex-
pected, it should be noted that regularization term(4]
makes the output fit better than other methods on both
wings which means strong nonlinearities [see Fig.2(e));
regularization term(5) makes the output fit better than
other ones on the peak of top which represents partially
linear part [see Fig.2(f)], so that the sum squared error
is lower but the hidden units are more needed.

Fig. 2: Relatively Smooth Output of Cascade Correlation Algo-
rithm with Regularization

Cascade Correlation algorithm with local regulariza-
tion effectively avoid weight-illgrowth to improve the
generalization, especially for regression problem. But,
as we have seen from Fig.2, there are still local ill-fitted
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part. Therefore, it merits further research. It is a pos-
sible way to use multi-regularization terms.
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