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ABSTRACT

When the number of sensors is less than that of the
signal sources, this problem is called’ Over Complete
BSS’ (OC-BSS), which is a difficult problem for lack
of information about signal sources and a mixing pro-
cess. A feedback approach has been proposed for the OC-
BSS. In this paper, new learning algorithms used in the
feedforward separation and the feedback cancelation are
proposed. The separated single source is fed back to the
inputs of the separation block, and is subtracted from the
observations, in order to reduce the number of equiva-
lent signal sources. Signal distortion, which is caused
in the subtraction process, is suppressed by a spectral
suppression technique. The learning of the feedforward
separation is accelerated by using the constraints derived
from the estimated mixing block. The proposed method
can improve a signal to interference ratio by 6 ∼ 10 dB
compared to the conventional methods.

1. INTRODUCTION

In many real applications of blind source separation
(BSS), it is hard to estimate the number of the signal
sources. The number of the sensors is usually different
from that of the signal sources. When the number of the
sensors is less than that of the signal sources, this prob-
lem is called ’Over Complete’ BSS (OC-BSS). The OC-
BSS is a difficult problem for lack of information about
the signal sources and the mixing process. Therefore,
the OC-BSS requires another information concerning
the mixing process and the signal sources, besides the
observed signals. Several kinds of conventional methods
have been proposed, which mainly use the histogram
of the observed signals as the additional information
[1],[2],[6]. Furthermore, a feedback approach has been
proposed, in which a separated signal source is fed back
to the input nodes and is subtracted from the observa-
tions in order to reduce the number of the equivalent
signal sources [10].

In this paper, new learning algorithms used in the
feedforward separation and the feedback cancelation are
are proposed for the feedback OC-BSS. Signal distor-
tion caused in the subtraction is suppressed by using
a spectral suppression technique. In the feedforward
source separation, an acceleration technique is proposed
to make fast and stable convergence possible. Finally,
simulation results will be shown in order to confirm use-
fulness of the proposed method.

2. A FEEDBACK APPROACH TO OVER
COMPLETE BSS

For simplicity, 3 signal sources and 2 sensors are used. A
block diagram of the proposed feedback structure OC-
BSS is shown in Fig.1.

Figure 1: Feedback approach to over complete BSS with
3 signal sources and 2 sensors.

Letting N be the number of the signal sources, the
number of the sensors M is set to be M ≥ [N/2 + 1],
where [X ] means an integer number not exceed X . Un-
der this condition, at least one output can separate a
single signal source. Because learning algorithms of the
BSS make the output signals of the separation block to
be statistically independent to each other [4]. Therefore,
one signal source can be separated. On the other hand,
the other output signals can include a plural number of
the signal sources. For example, u1 includes s1 and u2

includes s2 and s3.
Letting s1 be separated in u1, and u1 includes only a

single source, it is selected as the final output y1 through
a ’Signal estimator’. When the signal sources are speech
signals, a single speech signal is estimated by using a
pitch frequency. Details are omitted here. y1 is fed back
to the inputs of the separation block, and is subtracted
from the input signals x1 and x2, in order to eliminate
the s1 component in x1 and x2. Let the resulting x1 and
x2 be x′

1 and x′
2, respectively. x′

1 and x′
2, which include

only s2 and s3, are separated through another separa-
tion block denoted w′

ji. In this case, the number of the
sensors is the same as that of the signal sources, then
two signal sources can be separated by the conventional
learning algorithms.
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3. SIGNAL SOURCE SEPARATION IN
FIRST PHASE

3.1 Theoretical Analysis of Source Separation

The network shown in Fig.1 is taken into account here.
Furthermore, the mixing process is assumed to be an
instantaneous process, that is aji do not include any
time delay. The signal sources, the mixing block, the
observed signals and the outputs of the separation block
are related by[

x1(n)
x2(n)

]
=

[
a11 a12 a13

a21 a22 a23

][
s1(n)
s2(n)
s3(n)

]
(1)

[
u1(n)
u2(n)

]
=

[
w11 w12

w21 w22

] [
x1(n)
x2(n)

]
(2)

=
[

p11 p12 p13

p21 p22 p23

] [
s1(n)
s2(n)
s3(n)

]
(3)

Furthermore, the above equations are expressed by
using vectors and matrices as follows:

x(n) = As(n) (4)
u(n) = Wx(n) = WAs(n) = Ps(n) (5)

Assume s1(n) is separated in u1(n), and s2(n) and s3(n)
are separated in u2(n). A signal to interference ratio
in the 1st and the 2nd outputs, u1(n) and u2(n), are
evaluated by

p2
11

p2
12 + p2

13

p2
22 + p2

23

p2
21

(6)

3.2 Learning Algorithm in First Phase

Conventional learning algorithms can be basically ap-
plied to the group separation, that is separating s1(n)
and (s2(n), s3(n)). The learning algorithm using a mu-
tual information as a cost function, and adjusts the
weights following the natural gradient method [4],[5] is
applied to this problem.

l(W (n)) = − log | det(W (n))| −
M∑

k=1

log p(uk(n))(7)

W (n + 1) = W (n) + η[Λ(n)

− < φ(u(n))uT (n) >]W (n) (8)

φ(uk(n)) =
1 − e−uk(n)

1 + e−uk(n)
(9)

The operation <> is time averaging. p(uk(n)) is a prob-
ability density function of uk(n). Λ is a diagnal matrix.

In order to stabilize a learning process, the nonlin-
ear function φ() must satisfy Eq.(10), where p′ is a 1st
derivative of p [4]. Several methods have been proposed
for this purpose [7],[8]. In this paper, φ is controlled by
Eqs.(11) and (12), where κ4 is kurtosis.

φ(uk(n)) =
p′(uk(n))
p(uk(n))

(10)

φ(uk(n)) = a tanh(uk(n)) + (1 − a)u3
k(n) (11)

a =
1 − exp(−2.1κ4 − 2.5)
1 + exp(−2.1κ4 − 2.5)

(12)

κ4 is estimated by using the output uk(n) following the
recurrence formula [7].

3.3 Learning Acceralation by Using Histogram
of Observations

The observation x(n) is normalized.

v(n) =
x(n)

||x(n)|| (13)

The histogram of the observations is formulated by us-
ing distribution of v(n) along an angle. An example is
shown in Fig.2. The angles of three peaks denoted S1, S2

and S3 are related to tan θ1 = a21/a11, tan θ2 = a22/a12

and tan θ3 = a23/a13, respectively.

Figure 2: Example of histogram of observations
x(n). Horizontal axis indicates angle θ of x(n) =
[x1(n), x2(n)]T , that is tan θ = x2(n)/x1(n), and ver-
tical axis is histogram.

The learning algorithm is modified as follows:

w∗(n) = arg max
wj(n)

{uT (n)wj(n)} (14)

w∗(n + 1) = w∗(n)

−η[< φ(u(n))uT (n) >]w∗(n) (15)

w∗(n) is the winner column in W (n). An idea behind
the above learning algorithm is to frequently update the
weight vector, whose angle is close to that of the peak
of the histogram. In Eqs.(14) and (15), the norm of the
weights wj(n), w∗(n) and w∗(n + 1) are normalized to
be unity.

4. ELIMINATION OF A SINGLE SOURCE
THROUGH FEEDBACK

4.1 Estimation of Mixing Block

An estimation method for the mixed process by using
the histogram of the observations has been proposed [2].
This approach is taken into the learning process.

âi(n) is the estimation of ai = [a1i, a2i]T , which fol-
lows the distribution of x(n), that is v(n). âi(n) is
updated following

âi(n + 1) = âi(n) + η(v(n) − âi(n)) (16)

The initial guess of âi is very important. The histogram
is roughly estimated, and the angle of the peak is used
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for the initial guess of âi. In the example shown in
Fig.2, there are three peeks. Their angle are assigned
to âi, i = 1, 2, 3, that is a2i/a1i = tan θi. Furthermore,
||âi|| is normalized to unity.

4.2 Direct Subtraction of Separated Single
Source - Feedback(1) -

Suppose u1(n) includes a single source, that is s1(n).
Although it is impossible to remove s2(n) and s3(n) from
u1(n) completely, for simplicity we assume u1(n), that
is y1(n) includes only s1(n). u1(n) is selected as the
final output y1(n) as shown in Fig.1. x1(n) and y1(n)
are expressed by

x1(n) = a11s1(n) + a12s2(n) + a13s3(n) (17)
y1(n) = u1(n) = (a11w11 + a21w12)s1(n) (18)

Furthermore, s1(n) can be approximated by using the
estimated mixing block âji as follows:

ŝ1(n) =
y1(n)

â11w11 + â21w12
(19)

Following these relations, s1(n) is subtracted from
x1(n), in which a11s1(n) is included as shown in Eq.(17),
as follows:

x′
1(n) = x1(n) − â11ŝ1(n)

= x1(n) − â11y1(n)
â11w11 + â21w12

(20)

As a result, the s1(n) component in x′
1(n) is cancelled.

Actually, since the assumption is not complete, s1(n)
still remains in x′

1(n). This point will be investigated
through simulation.

4.3 Subtraction of Separated Single Source
Based on Histogram - Feedback(2) -

s1(n) included in x2(n) is subtracted based on the his-
tograms of y1(n) and x2(n). The histogram generated
by using x1(n) and x2(n) is denoted Fxx(θ), which is
shown in Fig.2. The other histogram generated by us-
ing y1(n) and x2(n) is denoted Fxy(θ), which includes
s1(n), s2(n) and s3(n) components. Since y1(n) mainly
includes s1(n) and x2(n) contains all sources with the
same probability, Fxy(θ) has the maximum value at the
angle corresponding to s1(n). The histogram, in which
s1(n) is not included, can be approximated by

F (θ) = Fxx(θ)
(

1 − Fxy(θ)
Fmax

)5

(21)

Fmax indicates is the maximum value of Fxy(θ). The
5th power is determined by experience. F (θ) takes zero
at Fxy(θ) = Fmax. In the other part, F (θ) is reduced ac-
cording to Fxy(θ). Since, the histogram of s1(n) is dom-
inant in Fxy(θ), the s1(n) component is well reduced.

The observation x(n) = [x1(n), x2(n)]T is re-
duced based on the histogram F (θ) at the angle θ =
tan−1(x2(n)/x1(n)). If F (θ) is small, then x(n) is well
reduced. After subtraction of s1(n) from x2(n), x2(n)
is denoted x′

2(n).

Simulation results for the above method of subtract-
ing s1(n) following the histogram F (θ) is shown here.
The histogram of (x1(n), x2(n)) before the s1(n) sub-
traction is shown in Fig.2 in Sec.3.3. Furthermore, the
histogram of (x′

1(n), x′
2(n)) after the s1(n) subtraction

is shown in Fig.3. From these simulation results, s1(n)

Figure 3: Histogram of (x′
1(n), x′

2(n)) after s1(n) sub-
traction.

is well subtracted from x1(n) and x2(n). Furthermore,
the histogram related to s2(n) and s3(n) still remain.

4.4 Signal Distortion Reduction by Spectral
Suppression

Even though s1(n) is subtracted from x2(n) based on
the histogram, the samples to be reduced are some-
what randomly selected. This causes signal distortion.
The signal distortion can be regarded as ’additive noise’.
Therefore, a spectral suppression method is applied to
suppress the signal distortion in this paper. The Joint
MAP method [9], in which distribution of speech is as-
sumed to be ’Super Gaussian’ is employed.

It is assumed that x′
1(n), in which s1(n) component

is well reduced by ’Feedback(1)’, is the clean speech,
and the signal distortion components caused by ’Feed-
back(2)’ is the noisy speech. A spectral gain G(k) is
given by [9]

G(k) = q(k) +
√

q2(k) +
τ

2γ(k)
(22)

q(k) =
1
2
− µ

4
√

γ(k)ξ(k)
(23)

τ and µ are parameters, which determine a probability
density function of the speech. ξ(k) is a power ratio
of the clean speech A2(k) and the noise λ(k). γ(k) is
a power ratio of the noisy speech R2(k) and the noise
λ(k). They are expressed by

ξ(k) =
A2(k)
λ(k)

, γ(k) =
R2(k)
λ(k)

(24)

Actually, A2(k) is determined by using the power spec-
trum of x′

1(n), and R2(k) is determined by using the
power spectrum of x′

2(n). The noise power spectrum
λ(k) is estimated by (R(k) − A(k))2.

The conventional Joint MAP method [9] is modi-
fied in this paper as follows: The probability density
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function of the speech signal is not always the super
Gaussian. Therefore, the parameters τ and µ are con-
trolled based on kurtosis of x′

2(n). In order to avoid over
suppression for low ξ(k), the lower bound of G(k) is de-
termined. Furthermore, when ξ(k) is high, G(k) is de-
sirable to be 1, however, sometime, G(k) becomes small
values. Therefore, we also employ the idea of ’Wiener
Filter’. When ξ(k) is large, G(k) is determined by

G(k) =
ξ(k)

ξ(k) + ε
(25)

ε is a constant less than 1.

5. SOURCE SEPARATION IN SECOND
PHASE

5.1 Learning Algorithm

x′
1(n) and x′

2(n) mainly include s2(n) and s3(n) com-
ponents. They are further separated through the new
separation block w′

kj . The learning algorithm proposed
for the first phase is applied to the second phase. Fur-
thermore, an acceleration technique is proposed.

5.2 Acceleration of Learning Process

Assuming an equivalent mixing block from si(n) to
x′

j(n) to be a′
ji, u2(n) and u3(n) can be expressed by

u2(n) = (w′
11a

′
12 + w′

12a
′
22)s2(n)

+(w′
11a

′
13 + w′

12a
′
23)s3(n) (26)

u3(n) = (w′
21a

′
12 + w′

22a
′
22)s2(n)

+(w′
21a

′
13 + w′

22a
′
23)s3(n) (27)

Assuming s2(n) and s3(n) be separated at u2(n) and
u3(n), respectively, the following conditions can be held.

w′
11a

′
13 + w′

12a
′
23 = 0 (28)

w′
21a

′
12 + w′

22a
′
22 = 0 (29)

Furthermore, we obtain

w′
11 = −w′

12a
′
23

a′
13

w′
21 = −w′

22a
′
22

a′
12

(30)

w′
ji satisfying these conditions are the ideal solutions.

a′
23/a′

13 and a′
22/a′

12 are estimated based on the his-
togram generated by using the modified observations
(x′

1(n), x′
2(n)). Letting angle, at which peaks of the

histogram appear, be θ1 and θ2, respectivey, they are
related by

tan θ1 =
a′
23

a′
13

tan θ2 =
a′
22

a′
12

(31)

w′
11 = −w′

12 tan θ1 w′
21 = −w′

22 tan θ2 (32)

Furthermore, letting the correction terms determined
by Eqs.(14) and (15) be ∆w′

kj , the proposed learning
algorithm is expressed by
Winner: First column= [w′

11, w
′
21]

T

w′
11(n + 1) = w′

11(n) + (1 − ζ)∆w′
11(n)

− ζ∆w′
12 tan θ1 (33)

w′
21(n + 1) = w′

21(n) + (1 − ζ)∆w′
21(n)

− ζ∆w′
22 tan θ2 (34)

Winner: Second column= [w′
12, w

′
22]

T

w′
12(n + 1) = w′

12(n) + (1 − ζ)∆w′
12(n)

− ζ
∆w′

11(n)
tan θ1

(35)

w′
22(n + 1) = w′

22(n) + (1 − ζ)∆w′
22(n)

− ζ
∆w′

21(n)
tan θ2

(36)

ζ is a constant less than 1. In the above update equa-
tions, the conditions satisfied by the ideal solutions are
combined to accelerate the learning process.

6. SIMULATIONS AND DISCUSSIONS

6.1 Simulation Setup

Two male speeches and one female speech are used as
the signal sources. The mixing process is assumed to
be a instantaneous process, and is determined as fol-
lows: a11 = a23 = 1, a13 = a21 = 0.3, a12 + a22 = 1.4.
Furthermore, a ratio of a12 and a22 is defined by

α =
a12

a22
, 0 < α ≤ 1 (37)

When α = 1, s2 locates at the middle point between s1

and s3, then separating s1 and (s2, s3) in the first phase
is very difficult. On the other hand, when α takes a
small value, s2 locates close to s3, then s1 and (s2, s3)
are easily separated. However, separating s2 and s3 in
the second phase becomes difficult. Thus, the difficulty
of source separation can be controlled by α, performance
of the proposed method can be evaluated in detail.

6.2 Evaluation of Signal to Interference Ratio

The output signals are compared to the sources.

SIRi = 10 log10

( ∑
s2

i (n)∑
(si(n) − yi(n))2

)
[dB] (38)

6.3 Simulation Results and Discussions

Figures 4 through 6 show SIRi. ’Conventional Method’
means the shortest path method [2]. ’Proposed Method
I’ employs the accelerated learning algorithm given by
Eqs.(14) and (15) in the first source separation. ’Pro-
posed Method IIa’ does not employ the spectral sup-
pression method proposed in Sec.4.4 and the accelera-
tion method proposed in Sec.5.2. ’Proposed Method I’
and ’Proposed Method IIa’ are included in [10]. ’Pro-
posed Method IIb’, which employs all of them, are newly
proposed in this paper.

Since α = a12/a22, α = 1 means the second source
s2(n) locates at the middle point between s1(n) and
s3(n). This condition is severe for the separation of
s1(n) and (s2(n), s3(n)). For this reason, SIR1 de-
creases as α increases. On the other hand, in the second
phase, s2(n) and s3(n) are separated. Therefore, their
separation becomes easy for a large α, with which s2(n)
and s3(n) locate far from the other. However, when α is
small, that is s2 and s3 locate close to each other, their
separation becomes difficult.
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Figure 4: Signal to interference ratio SIR1.

Figure 5: Signal to interference ratio SIR2.

Figure 6: Signal to interference ratio SIR3.

Comparing ’Proposed Method IIa’ and ’Proposed
Method IIb’, usefulness of the signal distortion reduc-
tion method in Sec.4.4 and the accelerated learning al-
gorithm in Sec.5.2 can be confirmed. Furthermore, com-
pared to the results of the conventional method, the
proposed method can improve SIRi by 6 ∼ 10 dB.

7. CONCLUSIONS

New learning algorithms are proposed for the feedback
OC-BSS. The signal distortion reduction method in
the feedback cancelation and the accelerated learning
method for the feedforward separation are proposed.
The signal to interference ratio is improved by 6 ∼ 10
dB compared to the conventional methods.
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