SUPERRESOLUTION OF MULTI-FREQUENCY SIGNALS USING MULTILAYER NEURAL NETWORK
SUPERVISED BY BACKPROPAGATION ALGORITHM

Kazuyuki HARA* Kenji NAKAYAMA**
* Graduate School of Nat. Sci. & Tech., ** Faculty of Tech., Kanazawa Univ.
2-40-20, Kodatsuno, Kanazawa, 920 JAPAN
E-mail: hara@haspnnl.ec.t.kanazawa-u.ac.jp
nakayama@haspnnl.ec.t.kanazawa-u.ac.jp

ABSTRACT Multi-frequency signal classification is discussed using multilayer neural networks supervised by the backpropagation algorithm. Several novel properties of the neural network are provided. First, the neural network can detect the frequencies, which cannot be represented by the discrete Fourier transform (DFT). Second, the neural network can be realized with real coefficients. DFT, however, requires the complex coefficients $\exp(\pm j \omega nT/N)$. Finally, the number of the inner products of the connection weights and the input signal samples is sufficiently smaller than that of the output samples, required in digital filters with real coefficients.

I INTRODUCTION

Advantage of multilayer neural networks supervised by the backpropagation (BP) algorithm is to extract common properties, features or rules, which can be used to classify data included in several groups [1]. Especially, when it is difficult to analyze the common features using conventional methods, the supervised learning, using the known input and output data, becomes very useful. This application field includes, for instance, pronunciation of English text, speech recognition, image compression, sonar target analysis, stock market prediction and so on [2]-[6].

In this paper, classification performance of the neural networks is discussed based on frequency analysis. Multi-frequency signals are employed for this purpose. Since the number of the input units in the neural network is finite, sampled data are taken into account. In order to analyze frequency components of the discrete signals, discrete Fourier transform (DFT) is usually used. In this case, the sampling points on the frequency axis discretely locate. Therefore, the representable frequencies are limited by the sampling frequency and the number of samples.

II MULTI-FREQUENCY SIGNALS

Multi-frequency signals are defined by

$$x_{pm}(n) = \sum_{r=1}^{\infty} A_{mr} \sin(\omega_{pr} n T + \phi_{mr}), \quad n=1\sim N, \quad \omega_{pr} = 2\pi f_{pr}$$  (1)

M samples of $x_{pm}(n)$, $m=1\sim M$, are included in the pth group $X_p$ as follows:

$$X_p = \{x_{pm}(n),\ m=1\sim M\}, \quad p=1\sim P$$  (2)

1
P signal groups, \( x_p, p=1\sim P \), are assumed.

\( T \) is a sampling period. The signals have \( N \) samples. In the same group, the same frequencies are used.

\[
F_p = \{f_{p1}, f_{p2}, \ldots, f_{pN}\} \text{ Hz, } p=1\sim P
\]  

(3)

Amplitude \( A_{mr} \) and phase \( \phi_{mr} \) are different for each frequency. They are generated as random numbers, uniformly distributed in the following ranges.

\[
0 < A_{mr} \leq 1
\]  

(4a)

\[
0 \leq \phi_{mr} < 2\pi
\]  

(4b)

III MULTILAYER NEURAL NETWORK

3.1 Network Structure

A two-layer neural network is taken into account. \( N \) samples of the signal \( x_{pm}(n) \) are applied to the input layer in parallel. The \( n \)th input unit receives the sample at \( nT \). Connection weight from the \( n \)th input unit to the \( j \)th hidden unit is denoted by \( w_{nj} \). The input of the \( j \)th hidden unit is given by

\[
\text{net}_j = \sum_{n=0}^{N-1} w_{nj} x_{pm}(n)
\]  

(5)

The input \( \text{net}_j \) is transferred through the following sigmoid function.

\[
y_j = f(\text{net}_j) = \frac{1}{1 + e^{-(\text{net}_j + \theta_j)}}
\]  

(6)

Letting connection weight from the \( j \)th hidden unit to the \( k \)th output unit be \( w_{jk} \), the input of the \( k \)th output unit is given by

\[
\text{net}_k = \sum_{j=1}^{J} w_{jk} y_j
\]  

(7)

Furthermore, the final output is obtained by

\[
y_k = f(\text{net}_k)
\]  

(8)

The number of output units is equal to that of the signal groups \( P \). The neural network is trained so that a single output unit responds to one of the signal groups.

3.2 Training and Classification

The set of signals is categorized into training and untraining data sets, \( X_{Tp} \) and \( X_{Up} \), respectively. Their elements are expressed by \( x_{Tpm}(n) \) and \( x_{Upm}(n) \).

\[
X_p = [X_{Tp}, X_{Up}]
\]  

(9)

\[
X_{Tp} = \{x_{Tpm}(n), m=1\sim M_T\}
\]  

(10a)

\[
X_{Up} = \{x_{Upm}(n), m=1\sim M_U\}
\]  

(10b)

The neural network is trained by using \( x_{Tpm}(n) \), \( m=1\sim M_T \), for the \( p \)th group. After the training is completed, the untraining signals \( x_{Upm}(n) \) are applied to the neural network, and the output is calculated following Eqs.(5)-(8). For the input signal \( x_{Upm}(n) \), if the \( p \)th output \( y_p \) has the maximum value, then the signal is exactly classified. Otherwise, the network fails in classification.
IV SIMULATION OF MULTI-FREQUENCY SIGNAL CLASSIFICATION

4.1 Two-Groups with Three Frequencies
(Case-1.1) Alternate Grouping of Frequencies

Two frequency sets are determined as follows:

\[ F_1 = [1, 2, 3] \text{ Hz} \]
\[ F_2 = [1.5, 2.5, 3.5] \text{ Hz} \]

The sampling frequency is chosen to be 10 Hz, that is \( T = 0.1 \) sec. The number of samples is \( N = 10 \). Therefore, the signals are sampled in the range \( 0 \leq nT < 1 \) sec, and \( n = 0 \sim 9 \). The training signal sets for each group include 200 signals, that is \( X_{TM}(n) \), \( m = 1 \sim 200 \) for \( p = 1 \) and 2. 3600 signals are used for the untrained signal sets, that is \( X_{UM}(n) \), \( m = 1 \sim 1800 \) for \( p = 1 \) and 2.

Figure 1 shows examples of the signals. The frequencies, included in \( x_{1m}(n) \) and \( x_{2m}(n) \), are located alternately. The observation interval and the number of samples are limited. Therefore, it is very difficult to distinguish \( x_{1m}(n) \) and \( x_{2m}(n) \), based on their waveform.

The training by BP algorithm can converge with a single hidden unit, that is a single-layer network. Figure 2 illustrates the connection weights from the input units to the hidden unit.

Since the training converged, 100% of the training signals \( X_{TM}(n) \) were successfully classified. For the untraining signals, the classification rate is 99.5%.

Thus, highly exact classification can be achieved.

(Case-1.2) Similar Frequencies

The following similar frequencies are employed.

\[ F_1 = [1, 2, 3] \text{ Hz} \]
\[ F_2 = [1.1, 2.1, 3.1] \text{ Hz} \]
Since the frequencies in both sets are very close to each other, it is more difficult to distinguish the signals based on their waveform. The BP algorithm can converge, and the accuracy for the untraining signals is still 99.5%.

4.2 Two-Groups with Five Frequencies

(Case-2.1) Training Signals with 10 Samples

The frequencies are chosen to be

$$F_1 = [1, 1.5, 2, 2.5, 3] \quad \text{Hz}$$
$$F_2 = [1.25, 1.75, 2.25, 2.75, 3.25] \quad \text{Hz}$$

The number of samples is $N=10$, and the sampling period is $T=0.1$ sec. The observation interval is $0 \leq nT < 1$ sec, and $n=0 \sim 9$. The training did not completely converge. Percentages of exact classification are 75.3% and 81.5% for $x_{T1m}(n)$ and $x_{T2m}(n)$, respectively. For the untraining signals $x_{U1m}(n)$ and $x_{U2m}(n)$, the accuracies are a little decreased to 71.8% and 79%, respectively.

(Case-2.2) Training Signals with 15 Samples

The frequencies are chosen to be

$$F_1 = [1, 2, 3, 4, 5] \quad \text{Hz}$$
$$F_2 = [1.5, 2.5, 3.5, 4.5, 5.5] \quad \text{Hz}$$

The number of samples is $N=15$, using $T=1/15$ sec. Therefore, the sampling points locate in $0 \leq nT < 1$ sec, and $n=0 \sim 14$.

The training can converge using a single hidden unit. Thus, 100% classification is possible for $x_{T1m}(n)$ and $x_{T2m}(n)$. Furthermore, 99.9% of the untraining signals can be classified. Comparison between Cases-2.1 and 2.2 will be discussed in Sec.V.

4.3 Three or Five Frequency Sets

(Case-3.1) Three Frequency Sets

The following frequency sets are used.

$$F_1 = [1, 2, 3] \quad \text{Hz}$$
$$F_2 = [1.33, 2.33, 3.33] \quad \text{Hz}$$
$$F_3 = [1.67, 2.67, 3.67] \quad \text{Hz}$$

The number of samples is $N=10$, and the sampling period is $T=0.1$ sec. $x_{T1}$ and $x_{T2}$ have 200 signals each. Totally, 5400 signals are used for the untraining data sets $x_{U1}$ and $x_{U2}$.

The number of the hidden units is varied from 1 to 4. In any case, the training did not completely converge. The classification accuracies are 91.2%, 98.0% and 99.5% for 1, 2 and 4 hidden units, respectively. For the untraining data, the accuracies are 90.1%, 97.0% and 98.6%, respectively. More hidden units did not improve the classification rates.

(Case-3.2) Five Frequency Sets with 10 Samples

The following frequency sets are chosen.

$$F_1 = [1, 2, 3] \quad \text{Hz}$$
$$F_2 = [1.2, 2.2, 3.2] \quad \text{Hz}$$
$$F_3 = [1.4, 2.4, 3.4] \quad \text{Hz}$$
\[ F_4 = [1.6, 2.6, 3.6] \text{ Hz} \]
\[ F_5 = [1.8, 2.8, 3.8] \text{ Hz} \]

The sampling period is \( T = 0.1 \) sec, and the number of samples is \( N = 10 \). 200 training signals are used for each group, that is, \( x_{TPm}(n) \), \( m = 1 \sim 200 \) for \( p = 1, 2, 3, 4 \) and 5. 1800 untraining signals are examined for each group, that is, \( x_{UPm}(n) \), \( m = 1 \sim 1800 \) for \( p = 1, 2, 3, 4 \) and 5.

The training did not completely converge. The number of hidden units was varied from 1 to 8. Percentages of the exact classification, with 3 and 8 hidden units, are listed in Table 1. By increasing hidden units, the classification rates can be improved. 5 \sim 8 hidden units are appropriate.

**Table 1** Classification rates [%] in Cases-3.2 and 3.3.

<table>
<thead>
<tr>
<th>CASE</th>
<th>Three hidden units</th>
<th>Eight hidden units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( x_{TP} )</td>
<td>( x_{UP} )</td>
</tr>
<tr>
<td>3.2</td>
<td>( F_1 )</td>
<td>98.0</td>
</tr>
<tr>
<td></td>
<td>( F_2 )</td>
<td>73.0</td>
</tr>
<tr>
<td></td>
<td>( F_3 )</td>
<td>65.0</td>
</tr>
<tr>
<td></td>
<td>( F_4 )</td>
<td>68.0</td>
</tr>
<tr>
<td></td>
<td>( F_5 )</td>
<td>77.0</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>76.2</td>
</tr>
</tbody>
</table>

| 3.3  | \( F_1 \) | 99.5 | 98.0 | 99.5 | 98.4 |
|      | \( F_2 \) | 82.5 | 84.3 | 99.5 | 98.5 |
|      | \( F_3 \) | 91.5 | 92.2 | 99.0 | 99.1 |
|      | \( F_4 \) | 94.0 | 90.3 | 99.0 | 97.2 |
|      | \( F_5 \) | 99.5 | 99.1 | 100.0 | 99.6 |
| Mean |        | 93.4 | 92.8 | 99.4 | 98.6 |

**Case-3.3** Five frequency Sets with 20 Samples

The following frequency sets are taken into account.

\[ F_1 = [1, 4, 7] \text{ Hz} \]
\[ F_2 = [1.5, 4.5, 7.5] \text{ Hz} \]
\[ F_3 = [2, 5, 8] \text{ Hz} \]
\[ F_4 = [2.5, 5.5, 8.5] \text{ Hz} \]
\[ F_5 = [3, 6, 9] \text{ Hz} \]

The sampling period is 0.05 sec, and the number of samples is 20. Thus, the sampling points locate in \( 0 \leq nT < 1 \) sec, and \( n = 0 \sim 19 \).

The classification rates are also listed in Table 1, which are improved from Case-3.2. Comparison between Cases-3.2 and 3.3 will be discussed in Sec.V.

### 4.4 Estimation Based on Euclidean Distance

Similarity between the training and untraining signals is evaluated using Euclidean distance as follows:

\[
D_{p,q}(m, m') = \left( \frac{1}{N} \sum_{n=1}^{N} (x_{TPm}(n) - x_{TPm'}(n))^2 \right)^{1/2} \tag{11}
\]

Table 2 shows the above Euclidean distance. \( a_i \) and \( c_i \) indicate some of \( x_{U1m}(n) \) and \( x_{U2m}(n) \), exactly classified, respectively. \( b_i \) and \( d_i \) correspond to some of \( x_{U1m}(n) \) and \( x_{U2m}(n) \), not exactly classified, respectively. The signals, having the minimum distance to the above signals, were searched for from \( X_{TP} \) and \( X_{TP} \). As a result, Table 2 shows the minimum Euclidean distance between \( a_i, b_i, c_i, d_i \) and some of \( x_{TPm}(n) \).

The Euclidean distance between \( x_{U2m}(n) \) and \( x_{TPm}(n) \) in the same group is not
always smaller than that between $x_{\mu m}(n)$ and $x_{\nu m}(n)$, $p \neq q$, in the different groups. Furthermore, the minimum distances for $a_i$, $c_i$ and $b_i$, $d_i$ are almost the same. These results indicate that the multi-frequency signals $x_{1m}(n)$ and $x_{2m}(n)$ cannot be distinguished based on the Euclidean distance.

V COMPARISONS BETWEEN NEURAL NETWORK AND DFT

5.1 Observable Frequencies by DFT

Generally speaking, multi-frequency signals can be analyzed by Fourier analysis. For the sampled data, DFT is used [7].

As defined in Sec.2.1, the sampling frequency is given by $fs = 1/T$. The sampling points on the frequency axis, that is representable frequency points, are given by $ifs/N$ Hz, $i=0,1,2,\ldots$, which satisfy $0 \leq ifs/N < fs/2$ Hz.

5.2 Limitation of Frequency Detection by DFT

Table 3 summarized the observable frequencies, signal frequencies, the number of hidden units and percentages of exact classification for each class. From this table, all frequencies cannot be represented by DFT. This means that the classification problems discussed in this paper, cannot be inherently solved by DFT. Some examples to demonstrate this fact are shown in the following.

Figure 3 shows examples for amplitude responses of $x_{\mu m}(n)$, $p=1(1)$, $2(5)$, $3(9)$, in Case-3.1. $x_{1m}(n)$ can be roughly recognized, because its frequencies are observable. On the contrary, $x_{2m}(n)$ and $x_{3m}(n)$ cannot be distinguished due to lack of their frequencies.

Furthermore, in Case-1.2, the signals $x_{\mu 1m}(n)$ are regenerated by setting their amplitude for each frequency to 50% of that of $x_{\mu 2m}(n)$, as follows:

$$x_{\mu 1m}(n) = \frac{1}{2} \sum_{m} A_{2m} \sin(\omega mT + \phi_{1m})$$

(12a)

$$x_{\mu 2m}(n) = \sum_{m} A_{2m} \sin(\omega mT + \phi_{2m})$$

(12b)

Figure 4 shows the amplitude responses for both signals obtained by DFT. From this result, $x_{\mu 2m}(n)$ may be classified into the first group $X_1$, because its
frequency components at 1, 2 and 3 Hz are greater than those of $x_{1m}(n)$. On the contrary, the neural network can distinguish these signals with 99.5% accuracy.

5.3 Performance of Neural Network

As discussed in the previous sections, the neural network can classify the multi-frequency signals, whose frequencies are not completely represented by DFT. The classification performance of the neural network is also dependent on what percentage of the frequencies can be observable as shown in Table 3.

In Case-2.1, 1.5, 2.5 Hz in $F_1$ and all frequencies in $F_2$ cannot be represented by DFT. As a result, the percentages of classification are not so high. On the other hand, in Case-2.2, all frequencies in $F_1$ can be represented by DFT. Therefore, the accuracies are drastically improved. In Case-3.2, $F_1$ is only representable. On the other hand, in Case-3.3, $F_1$, $F_2$ and $F_3$ can be represented. Therefore, the classification rates are improved.

Although performance of the neural network still depends on the observable frequencies, it is not necessary to represent all frequencies. About 30~50% of the frequencies are sufficient to achieve high classification rates. This point should be noted as essential difference between the neural network and DFT.

The number of hidden units, required to obtain high accuracy, is proportional to the number of the signal groups. That could be expected following the discussions in [8].

5.4 Design Problem of Real Coefficients

There is another typical difference between the neural network and DFT. The latter needs complex coefficients $\exp(\pm j\omega nT/N)$. On the other hand, the neural network can be realized with real coefficients. One example is shown here.

In Case-1.1, the number of samples is increased to 20, while the same sampling period $T=0.1$ sec is used. Therefore, the signals are sampled in the interval $0 \leq nT < 2$ sec, at every 0.1 sec. The frequency points, which can be represented by DFT, become 0, 0.5, 1, ..., 4.5 Hz, which include all frequencies in $F_1$ and $F_2$.

After the neural network was trained, the amplitude and phase responses of the connection weights were calculated through DFT. The frequency components in the first group $x_{1m}(n)$ can be emphasized, and those of the second group $x_{2m}(n)$ are suppressed. This amplitude response could be expected based on DFT analysis. However, there is no direction on the phase response. Different phase
response was used to generate another connection weights. These weights, however, did not work well. The classification accuracy is about 63%. Because the problem is a choice between two things, 63% is very low accuracy. Thus, the phase response obtained by BP algorithm has significant meaning, which cannot be designed by the conventional methods.

5.5 Filtering Method

Frequency component extraction with real coefficients is also possible using digital filters [7]. The digital filters can continuously sweep the frequency axis. The output signal is obtained through the convolution sum of the input signal and the impulse response of the digital filter. The amplitude response of the transfer function can be designed so as to amplify one of \( x_p(n) \) and to suppress the other. However, in order to remove effects of the phase response, the mean square of \( y(n) \) is required over \( N \) samples.

The neural network, trained with a single hidden unit, requires only one inner products of the input signal and the connection weights. However, the digital filters cannot detect the frequency components with one output sample.

VI CONCLUSIONS

The multi-frequency signal classification problems have been discussed using the multilayer neural network supervised by BP algorithm. Several novel properties have been provided. First, the neural network can classify the sets of frequencies. Some of them cannot be represented by DFT. Second, the neural network can be realized with real coefficients. DFT needs the complex coefficients \( \exp(\pm j \omega nT/N) \). Finally, the number of the inner products, required in the neural network, is sufficiently smaller than that of the output samples, required in the digital filters.

REFERENCES