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An Improved Fast Fourier Transform Algorithm
Using Mixed Frequency and Time Decimations

KENJI NAKAYAMA

Abstract—An improved FFT algorithm combining beth decimations
in frequency and in time is presented. Stress will be placed on a deri-
vation of general formulas for submatrices and multiplicands. Com-
putational efficiency is briefly discussed.

[. INTRODUCTION

Many efforts on improving the classical FFT algorithm [1] have
been reported, with respect to combinations of radixes [2] and to
some multiplicand medifications [3]. DFT matrix decomposition
based on the Chinese remainder theorem and fast convolution al-
gorithms have been combined into computationally efficient algo-
rithms [4], [5], which can save multiplications at the expense of
additions and a regular structure. In order to preserve these features
of the FFT, a mixed decimation FFT (MDFFT) algorithm combin-
ing both decimations in frequency (DIF) and in time (DIT) has
been proposed [6], [7]. This correspondence provides general for-
mulas for submatrices, multiplicands, and computational complex-

ity.
II. GENERAL RADIX DECIMATION

A. Definitions for Matrices

DFT Coefficient Matrix F(Ny): An Ny X Ng size matrix whose
element at the ith row and kth column is given by

f(i,k)=exp<—j21rﬁk->, j=\/-——|. (1)
(3

Radix M Decimation Matrix Dy (N): An N X N size matrix
whose element at the ith row and kth column is given by

dM(i’ k)

Lok=|M 1 —N) +iM
[

=0, otherwise. (2)
DIF and DIT are performed by multiplying F(N ) by Dy (N ) from
the left side and the right side, respectively. [x] means the maxi-
mum integer not exceeding x.
Submatrix of MDFFT G(Ng, N, k, 1}, k3, 13): An N X N size
matrix whose element at the ith row and kth column is given by

. o ik ky+ il Kk + klz)
k) = - —= + .
g(i. k) exp{ m(N L N, (3)

B. General Radix Decimation

A submatrix obtained through the mixed decimation is expressed
using the matrix G. First, reformation of G after DIF and DIT are
separately stated here.

Theorem 1—Decimation in Frequency: G(Ng, N, ky, 1), ky, 13)
is broken down by multiplying Dy (N ) from the left side as fol-
lows:
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DM(N) G(No, N, kl! Ils ka 11)
Gf.O WO Wo st WO

6, 0O

= Wo Wl : W.u—l
O Grar-y Wo Wy_y -+ W,
Af.l
. (4)
O Af.M-l
Gﬁ, = G(No, N/M, ky + sl,, Ml,, ky, I, + sNg/N) (5)
W, = exp (—j2as/M)I(N/M) (6)
Ag, = ajI(N/M) (7a)
o= a® (7b)
)
a=exp| —j2x—— ). Tc
p( 72" N, (7c)

Proof: An element of Dy (N )G at the (m, sN/M )th row and
kth column becomes

<m + -’! k)
gM SM:
+ k
= exp {—j2w(%

+ kl + (S + mM)l, + kz +k12> )
No No

(8)

Thus, elements of G at the (s + mM )th row are moved to the (m
+ sN/M )th row. The above equation is further rewritten as

gM<m + 5 %, k)
_ . mk (ky + sl)) + m(Ml))
= exp{ Jzﬂ((N/M) N,

+ k, + k(I + sNo/N)>}.
No

(9)

A matrix having the above element at the mth row and kth column
becomes
Gr; = G(No, N/M, ky + sty, Ml,, ky, Iy + sNo/N).  (10)

Since an element gy (m + sN/M, k + rN/M) is separated into

<m + s —N k + —N)
. r
bu M M

.. ST
= exp <—127r M)

.. Nl N
. exp(—_;Z-rrM—Nzor> g,,(m +s;l, k). (11)
A matrix having the above element at the mth row and kth column
can be also transformed into the following separated form:

Gs.r = w" - af * Gy, (12a)
w =exp (—j2x /M) (12b)
oy = . (12¢)
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Theorem 2: G(Ng, N, k. 1|, k. 1) is broken down by multi-
plying D, (N ) from the right side as follows:

G(No. N, ky, Iy, ky. 1) Dy(N)

Ao O Wo Wo -+ W,
_ A W, W, Wy
0 Aay-y Wo Wy_y -+ W,
GLO O
G
A (13)
O GI.M—I

Gl,s = G(No, N/M. k], ll + Sh’o/N, kz + 512, Mlz) (14)
A, = oa;I(N/M) (15a)
a, = a. (15b)

Proof: Theorem 2 is proved by exchanging row and column
in the previous proof.

III. GeNERAL FORMULAS FOR SUBMATRICES AND
MULTIPLICANDS

There exist degrees of freedom for ordering DIF and DIT. One
efficient approach is to use both decimations alternately, because
of its regular structure. For this reason, the following descriptions
are based on the alternate MDFFT.

Theorem 3: Letting G(Ng, N, k\(m), },(m), ks(m}), l,(m)) be
Gy, or G, at the mth stage, general formulas for its elements are
given by

m/2)

him) = MU R20(0) + 2 sy DT (16a)
‘ [(m—1)/2)

L{m) = M'"/21,(0) + 'Zo SpiegM'mATE (16b)

k(2n + 2) = ky(2n + 1) = k(0) + 5,4,(0)

+ jg:' 52,+1{M]’1(0)

J
+ MY X sz,.M'z, =2n+1,2n +2
i=]

(17a)

k2(2n + l) = kZ(Zn) = k2(0) + éISZI{Mle(O)
j=

=1
+ M Zo sz,‘,M'}. m=2n,2n+ 1.
=

(17b)

It is assumed that decimation starts from DIF. A parameter s; is
identical with s in Theorems | and 2, and { indicates the stage
number.
Proof:
ly(m): DIF and DIT are employed at odd and even stages,
respectively. From Theorems | and 2, the following recurrence
formulas are obtained:

L(2n) = L(2n = 1) + s, M} (18a)
L{(2n + 1) = Mi(2n). (18b)

They are separated for odd and even stages as follows:
L(2n + 1) = ML(2n — 1) + 5, M™" (19a)

L(2n + 2) = ML(2n) + sy MP" . (19b)

Furthermore, these equations converge the following closed forms:

L(2n + 1) = M"*1,(0) + Z. syM™! (20a)

n+l

L(2n + 2) = M™'1(0) + Z. S - M7 {(20b)
i

These expressions can be combined into a single formula given by
(16a).

ly(m): Recurrence formulas for /,(m) at odd and even stages
are

L(2n + 1) = ML(2n = 1) + $3,., M7 (21a)
5(2n + 2) = Ml,(2n) + 55, M7, (21b)

Equation (16b) can be derived in a similar way as that for /,(m).
ky(m): From Theorems 1 and 2, the recurrence formulas
are obtained.

ki(2n + 1) = k{2n) + 53,4, - 1,{(2n) (22a)
k(2n + 2) = k(20 + 1). (22b)

Equation (22a) is modified into an odd stage equation as
k(2n + 1) = k(20 = 1) + 55,.,4,(2n). (23)

A closed form for £, (2n + 1) becomes

ki(2n + 1) = k(0) + 5,4,(0) + IZ:I syer - 1(2)). (24)

Based on this, a general formula (17a) can be derived. ky(2n + 2)
is directly obtained from k,(2n + 1) as stated in (22b).
ka(m): Recurrence formulas for k,(m) become

k2(2n + ]) = k2(2n)
kx2n 4+ 2) = ky(2n + 1) + 530,02  15{20 + 1).

(25a)
(25b)

A derivation process of (17b) is also the same as that for k,(m).
Theorem 4: Letting as(m) and o, (m) be ayand «, at the mth
stage, general formulas for them are given by

as(m) = exp (—j2aly(m — 1)/M™)
a,(m) = exp (—j2ul(m — 1)/M™).

(26a)
(26b)

Proof: This theorem is easily proved from (7) and (15).
A structure for the radix 2 alternate MDFFT is illustrated in Fig.
1.

IV. CoMpUTATIONAL COMPLEXITY

The proposed MDFFT requires multiplications for af”(m) and
a;"(m), and Gy ..., OF Gy o\, .., at the final stage, where L =
log, No. The number of multiplications is obtained by substituting
values O and 1 or 0, 1, 2, and 3 into 5; in the general formulas for
the multiplicands. Coefficients e /**/" require zero, two, and three
real multiplications forn = 4, n = 8, and n > 8, respectively [6).
Additions are required in the complex multiplications and DIF and
DIT stages. The number of real multiplications for radix 2 MDFFT

becomes ‘

Oyprrr = 3N logy N = TN + 10VN — 4. (27)

Input data are assumed to be complex. On the other hand, the num-
ber of multiplications for radix 2 FFT algorithm is given by

Oppr = 3N log; N — SN + 8 (28)
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Fig. 1. Block diagram for 16 point radix 2 alternate MDFFT, where w =
exp (—j2%/16).

under the same condition. From (27) and (28), MDFFT can save
multiplications by 15-20 percent from the FFT algorithm. Fur-
thermore, additions are slightly reduced. These reductions are also
obtained for a radix 4 structure.

V. ConcLUSION

General formulas for submatrices and multiplicands appearing
in MDFFT have been presented. Computational efficiency has been
briefly discussed.
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