IEICE TRANS. FUNDAMENTALS, YOL. E78—-A, NO. 8 AUGUST 1995

999

ILETTER Special Section on Digital Signal Processing

A Stable Least Square Algorithm Based on Predictors
and Its Application to Fast Newton Transversal Filters

SUMMARY In this letter, we introduce a predictor based least
square (PLS) algorithm. By involving both order- and time-
update recursions, the PLS algorithm is found to have a more
stable performance compared with the stable version (Version
II) of the RLS algorithm shown in Ref.[1]. Nevertheless, the
computational requirement is about 50% of that of the RLS al-
gorithm. As an application, the PLS algorithm can be applied
to the fast newton transversal filters (FNTF)[2]. The FNTF
algorithms suffer from the numerical instability problem if the
quantities used for extending the gain vector are computed by
using the fast RLS algorithms. By combing the PLS and the
FNTF algorithms, we obtain a much more stable performance
and a simple algorithm formulation.

key words: adaptive filters, RLS algorithm, fast RLS algorithm,
fast newton transversal filters, stability

1. Introduction

The fast RLS algorithms, which use the relation be-
tween the forward and the backward predictions for
computing the gain vector, combine four transversal fil-
ters implemented in a parallel form[1]. The four fil-
ters include two predictors, one filter for a gain vector
and the other filter for a tap-weight vector of the adap-
tive filter. Each filter has the same order that equals
to the adaptive filter length N. The method proposed
in Ref.[2] shows, however, that if the input signal can
be adequately modeled by an Mth-order autoregressive
model, denoted AR(M), and M is possible to be se-
lected much smaller than N, then the gain vector can
be extended from M to N based on the M th-order pre-
dictors without sacrificing the performance. According
to this method, the white noise can be considered as
an AR(0) sequence, and the speech signal can be mod-
eled from AR(15) to AR(20). Therefore, computational
saving is significant in some applications, in which N
is usually much greater than M. An echo canceler is
included in this category.

Like any other fast version of the RLS algorithm,
the FNTF algorithms also suffer from the numerical
instability problem, if the predictor used for extending
the gain vector is computed by using the fast RLS al-
gorithm. In order to overcome this problem, it was
suggested to use the RLS algorithm for the predictor
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part[2]. However, the extension of the gain vector needs
not only the predictor but also other quantities like pre-
diction error, conversion factor, etc. Therefore, addi-
tional computation is necessary and the formulation of
the algorithm becomes quite complicated.

In order to solve these problems, in this letter, we
introduce a predictor based least square (PLS) algo-
rithm. Unlike the fast RLS algorithm whose recursion
is based on a fixed order, the PLS algorithm involves
both order- and time-update recursions. So only one
predictor, forward or backward, is needed. Although
the computational complexity of the PLS algorithm in-
creases with M?, the numerical property is greatly im-
proved compared with the fast RLS algorithm. Simu-
lation shows that the PLS algorithm has a more sta-
ble performance than the stable version (Version II) of
the RLS algorithm shown in Ref.[1]. Nevertheless, the
computational requirement is about 50% of that of the
RLS algorithm. We notice that there is no reported
investigations concerning the PLS algorithm.

As an application, the PLS algorithm is suited for
applying to the FNTF algorithms, in which the PLS
algorithm can be used for the prediction part and the
FNTF algorithms used for the extending part. The com-
bined algorithms are shown to have a much more stable
performance and a simple algorithm formulation.

2. Predictor Based Least Square Algorithm

The PLS algorithm can be derived from any version of
the fast RLS algorithm. Since only one predictor, for-
ward or backward, is needed, we can write two versions
of the PLS algorithm as follows

Condition: For both versions, when time
n=1,2,3,... compute the order updates in the
following sequence: m = 1,2,... M, where M is the
final order of the predictor.

Algorithm 1. PLS Algorithm Using Forward Predictor
(FPLS)

Nm(n) = u(n) + a¥ (n - Duy{n—1) (D

Fp(n) = AFp(n—1) + Ym0 — 1)”31(”) (2
_ AFp(n—1)

Ymr1(n) = Tm(n)—%n(” -1) (3)
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Nm(n) 1
T X En—1) [am(n - 1)] @
an(n) =an(n—1) )
- 'Ym(n - 1)nm(n)km(n - 1) (5)

where n,,(n) is the forward a priori prediction error,
F.(n) is the minimum power of the forward prediction
error, v (n) is the conversion factor, Em(n) is the nor-
malized gain vector, a,,(n) is the fap-weight vector of
the forward predictor, u,,(n) is the tap input vector.

Algorithm 2. PLS Algorithm Using Only Backward
Predictor (BPLS)

Ym(n) = cL (n — 1)uy,(n) + u(n _ ™) (6)
Bm(n) = /\Bm(n - 1) + Vm(n)¢3n(n) ’ @)
() = i%%—)i)%(n) ®)

kmt1(n) = [f{mo( )}

Y (n) cm(n—1)
[T I B

cm(n) = cm(n — 1) = Ym(n)thm (n)km(n) (10)

where 1, (n) is the backward a priori prediction error,
By, (n) is the minimum power of the backward prediction
error, ¢y (n) is the tap-weight vector of the backward
predictor.

The filtering part is common for both the FPLS
and the BPLS algorithms.

an(n) = d(n) — wh(n — Dup(n) (11)
Wi (n) = Wi (n— 1) + kny(n)yar(n)on(n)  (12)

where ayr(n) is the a priori estimation error, d(n) is
the desired signal, Was(n) is the tap-weight vector of the
adaptive filter.

Please refer [1] for more detailed meaning of the sym-
bols used in Egs. (1)—(12).

To initialize the PLS algorithm at time n = 0, set

am(O) = Cm(o) =0n (13)
Fn(0) = B, (0)=§ (14)
K, (0) = 0, (15)
1m(0) =1 (16)

where m = 1,2,..., M. 6§ is a small positive constant.
At each iteration n = 1, generate the first-order
variables as follows

o) = 587 (0= Dulo) = g5 s (7)
nn) =7 FRyun) | ®1(n) (18)
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where ®1(n) is the first-order of the input correlation
matrix and satisfies

®i(n) = A1 (n—1) +u?(n) (®1(0)=6) (19)

3. Stability Analysis of PLS Algorithm

It is known that the instability of the fast RLS algorithm
is mainly caused by the accumulation of the round-off
errors in the recursive process[3]-[5]. In this section,
we will prove that the accumulation of the round-off er-
rors in the PLS algorithm can be greatly reduced com-
pared with the fast RLS algorithm.

In the fast RLS algorithms, we know that the mini-
mum powers of the forward and the backward predictor
errors most probably accumulate the round-off errors.
So we want to analize the error propagation properties
of these powers in the PLS algorithm and compare with
that of the fast RLS algorithm.

Suppose at time n and order m, some round-off
errors are introduced in the forward predictor of the
FPLS algorithm and make

Mm (1) = (1) + €n(n) (20)
where (-)* denotes the variable without numerical error.
Then the minimum power of the forward prediction er-
ror indicated by Eq. (2) can be written as

Frn(n) = AFp(n — 1) + v (n — 1)n2,(n)

= AFpn(n—1) + Y (n—1)n;2 (n)
Fim(n=1)er(n)

=FE}(n) + vm(n — Lep(n) 2D
where
er(n) = 2nm(n)e,(n) + ef‘;(n) (22)
According to Eq.(3), we have
A, _1(n—2
=) = LDy
o )\Fm_l(n — 2) )\Fm_g(n — 3)
o Fm_l(n — 1) . Fm_g(n - 2)

)\Fl (n — m)
”"Fl(n—~m—|——l)%(n —m)
AP i (n—i—1)
I e @

Note that
AFp—i(n—i—1) o
Foni(n—3) <1, i=1...m—1 (24)

and the first-order of the conversion factor shown in
Eq. (18) satisfies

. )\@1(71**771*1) <1
- AP (n—m—1)+u?(n—m) ~

m(n —m)
(25)
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So we get
Ym(n—1) <y1(n—m) <1 (26)

Correspondingly, the propagation of the numerical er-
rors is therefore

Ym(n — ep(n) < ep(n) 27

This means that the round-off error ex(n) produced at
n can be reduced as m and n increase. ]

For the same reason, we can write the minimum
power of the backward prediction error indicated by
Eq.(7) as

Bun(n) =B (n—1)+7m(n)y32 (n) +vm(n)ep(n)

= B..(n) +vm(n)es(n) (28)
From Eq. (8), we have
AB,,.(n —
) = 2220t )
_ABm(n—1) ABp-1(n—1)
~ Bp(n) B,,—1(n)
. 7/\]3;(17;7:) 1)71 (n)
m—1
- 1 e U ‘Z(,’En_) Y i) (29)
i—0 m—1
Note that
%75—1)“ i=0..m—1 (30)
and
G pp— LU (31

= <1
A@1(n— 1)+ u?(n) —
So we can readily deduce that
Tm(n)ep(n) < ep(n) (32)

In the fast RLS algorithms, a fixed order of the the
minimum power of the forward prediction error is given
by

Fay(n) =AFy(n—1) +yu(n— Dnie(n)  (33)
Using Egs. (3) and (8) (m = M), we can write

rYM(n_l)*— FM(’IL*~1) ’ )\BM(’IL—2>7M(TL~2)
© Fy(n—1) ABpy(n-—2)
AFy(0)  Bp(1)
T 3By MO
T ARy (n—i—1)
- 11;[1 FM(n—’i)
BM(n—i)

. )\BM(’TL~’L'—1) (34)
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Fig.1  Numerical behavior of PLS and FTF. Minimum power
of forward prediction error Fj (n) computed under the following
conditions: white noise input, M = 100, A = 0.98 and é = 1.

where v,7(0) = 1 is the initial value. Since the follow-
ing is not always guaranteed

APy(n—i—1)  Bu(n—i)
Fan—4)  MBu(m—i-1) <"

i=1...n—1 (35)

the accumulation of the round-off errors may occur and
eventually lead to the divergence of the fast RLS algo-
rithms.

Figure 1 shows the numerical performances of the
minimum power of the forward prediction error Fis(n)
computed by using the FPLS and the fast transversal
filter (FTF) algorithms. The FTF algorithm diverges
after 1500 iterations, while the FPLS algorithm is sta-
ble.

4. Comparison Between PLS and RLS Algorithms

Even though both the PLS and the RLS algorithms pro-
vide the same exact least square solution, the basis for
these two algorithms are entirely different. The RLS
algorithm is derived from the matrix inversion lemma.
The PLS algorithm is, however, based on the relation-
ship between the predictor and the gain vector. So it
can be expected that they will exhibit different numeri-
cal properties.

In the RLS algorithm, it is known that the diver-
gence occurs when the inverse of the input correlation
matrix loses its symmetry. This source of instability can
be overcome by computing the gain vector exactly as it
arises in the formulation of the RLS algorithm instead
of exploiting the symmetry property of the inverse of the
input correlation matrix. Another source of instability
is that when the forgetting factor A reduces, the inverse
of the input correlation matrix tends to be singular and
may lose its positive definiteness[6]—8].

Simulation shows, however, that these two sources
of instabilities do not exist in both the FPLS and the
BPLS algorithms. The reason for the numerical stabil-
ity of the PLS algorithm is under further investigation.
Here we want to show the stable performance through
computer simulation. The simulation is done under the
following conditions: M = 100, A = 0.8 and § = 0.01.
A white noise sequence with the power normalized to
unity is used as the input. The computational precision
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Fig. 2 Numerical behavior of PLS and RLS, (a) Estimation
error of using RLS when A = 0.8, (b) Estimation error of using
PLS when A = 0.8.

Table 1 Comutational Complexity of RLS and PLS.
NG Multiplications Divisions Addition§ &

Algorithm Subtractions
RLS | 2M%7Mis M %aM+3 2M +6M+4
FPLS/BPLS | M Z%dM+1 M M “s2M+1

is 32-bit floating-point arithmetic.

Figure 2 shows the numerical performance of the
RLS and the PLS algorithms. As shown in Fig.2 (a),
when X = 0.8, the RLS algorithm becomes unstable af-
ter 150 iterations. Furthermore, after 850 iterations, the
inverse of the input correlation matrix becomes singu-
lar. No such instability occurs in the PLS algorithm, as
shown in Fig. 2 (b).

Another advantage of the PLS algorithm is that
about 50% computations are required compared with
the RLS algorithm as shown in Table 1. This is be-
cause the symmetry property of the inverse of the input
correlation matrix is exploited in the PLS algorithm. It
has been shown that the explosive divergence will occur
if this property is used in the RLS algorithm [7].

5. Application to FNTF Algorithms

There are three versions of the FNTF algorithms for ex-
tending the gain vector[2]. Version 1 requires both the
forward and backward predictors. Version 2 requires
only the forward, and Version 3 requires only the back-
ward predictor. The FPLS and the BPLS algorithms
can readily be used in Version 2 and 3. For conve-
nience, we write Version 2 in this section.

Version 2. Extending Gain Vector Based on FPLS Al-
gorithm

Define:
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- nar(n) 1
Sm+1(n) = New(n—1) [aM(n _ 1)] (36)
n=n—-N+M 37

set Gy (0) =0, gn(0) = 0. From the FPLS algorithm,

we get Sari1(n), Sarv1(n), ma(n), nu(nc), ks (ne),
v (n), then the normalized gain vector ky(n) can be
calculated as

0= lewen] [

~[suifeo “

ky(n) = [‘;;;3 (jw)] + Gy (n) (39)
gn(n) = gy (n — 1) + Sy ()0 (n) |

— Spr+1 (0 (n) (40)

Bn(n) = ) + gn(n) (41)

where S}, (n) denotes the first element of Spsy1(n).
The filtering part is given by

ay(n) = d(n) — Wy (n — Duy(n) (42)
Wy (n) = wy(n—1) + kn(n)an(n)/By(n) (43)

Following the same procedure, we can write Ver-
sion 3, which combines the BPLS and the FNTF algo-
rithms[9].

In Version 2, the quantities of Sy q1(n) are cal-
culated in the FPLS algorithm. So only 3M additions
are necessary for computing the gain vector kN( ) from
kM( ). Thus, the cornputatlonal complexity of the com-
bination of the PLS and the FNTF algorithms is about
SM? +3M + 2N (multiplications and divisions per it-
eration). This saving of computation is significant es-
pecially in the case of V > M, which is satisfied in
acoustic echo canceler application.

The numerical property of the combined algorithm
depends on the gain vector and the predictor of order
M. Since both of them are calculated by the PLS algo-
rithm, a good numerical performance for the gain vector
of order N can be expected.

6. Simulation Results

In this section, some simulations for an echo cancella-
tion problem by using the combination of the PLS and
the FNTF algorithms are carried out.

The echo path is tested inside a car environment.
Figure 3 (a) shows two impulse responses for no person
and three persons in the car, respectively. From this fig-
ure, the power of the impulse responses is concentrated
within about 250 samples. So we choose N = 250. A
speech signal shown in Fig.3(b) with power normal-
ized to unity is used as the far-end signal, and the near-
end signal is supposed to be zero. Since suitable initial
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values are important to the FNTF algorithms[2], we
choose § = 1 and A = 0.98. In order to make com-
parisons for the convergence rate as well as the tracking
speed, the echo path is changed from one (no passen-
ger) to the other (three passengers) at a 1500 sampling
point.

Figure 4 shows the mean square residual echo for
(1) N =250, M = 20, implemented by using the com-
bination of the PLS and the FNTF algorithms and the
combination of the FTF and the FNTF algorithms. (2)
N = M = 250, implemented by using the RLS algo-
rithm. The simulation results demonstrate first that the
FNTF algorithm becomes unstable after 1180 iterations
when the fast RLS algorithm is used for computing the
prediction part. The use of the PLS algorithm for the
prediction part provides a stable performance. Second,
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Fig. 3 Simulation conditions, (a) Impulse responses of the

echo path, (b) Speech signal used for simulation.
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Fig.4  Simulation results, (a) Combination of PLS and FNTF
(solid line) and combination of FTF and FNTF (dashed line)
when N = 250, M = 20, (b) RLS when N = 250, M = 250.
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the speech signal we used can be modeled by an AR(20).
Therefore, even though the order of the adaptive filter
is N = 250, the choice of the order M = 20 for the pre-
dictor gives the performance that is comparable to the
optimum least square solution of M = 250. However,
the computations (multiplications and divisions per it-
eration) are about 1160 required for the combination
of the PLS and the FNTF algorithms, which are much
fewer than 190,250 required for the RLS algorithm.

7. Conclusion

A predictor based least square algorithm has been in-
troduced. It is shown that the PLS algorithm behaves
more stable and needs less computation compared with
the RLS algorithm. Furthermore, the PLS algorithm
is very suited for applying to the FNTF algorithms,
in which the required quantities for extending the gain
vector are also computed in the PLS algorithm. Thus,
the combination of these two algorithms provides not
only a stable performance but also a simplified algo-
rithm formulation. The simulation results for echo can-
cellation problem demonstrate the practical usefulness
of applying this combined algorithm to real problems.
The numerical property of the PLS algorithm will be
further studied.
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