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SUMMARY Time series prediction is very important technol-
ogy in a wide variety of fields. The actual time series contains
both linear and nonlinear properties. The amplitude of the time
series to be predicted is usually continuous value. For these rea-
sons, we combine nonlinear and linear predictors in a cascade
form. The nonlinear prediction problem is reduced to a pattern
classification. A set of the past samples z(n —1),...,z(n — N)
is transformed into the output, which is the prediction of the
next coming sample z(n). So, we employ a multi-layer neural
network with a sigmoidal hidden layer and a single linear out-
put neuron for the nonlinear prediction. It is called a Nonlinear
Sub-Predictor (NSP). The NSP is trained by the supervised learn-
ing algorithm using the sample x(n) as a target. However, it is
rather difficult to generate the continuous amplitude and to pre-
dict linear property. So, we employ a linear predictor after the
NSP. An FIR filter is used for this purpose, which is called a
Linear Sub-Predictor (LSP). The LSP is trained by the super-
vised learning algorithm using also z(n) as a target. In order
to estimate the minimum size of the proposed predictor, we ana-
lyze the nonlinearity of the time series of interest. The prediction
is equal to mapping a set of past samples to the next coming
sample. The multi-layer neural network is good for this kind of
pattern mapping. Still, difficult mappings may exist when several
sets of very similar patterns are mapped onto very different sam-
ples. The degree of difficulty of the mapping is closely related to
the nonlinearity. The necessary number of the past samples used
for prediction is determined by this nonlinearity. The difficult
mapping requires a large number of the past samples. Computer
simulations using the sunspot data and the artificially generated
discrete amplitude data have demonstrated the efficiency of the
proposed predictor and the nonlinearity analysis.

key words: cascade form predictor, time series prediction, multi-
layer neural networks, FIR filters, nonlinear prediction, nonlin-
earity analysis, input dimension estimation

1. Introduction

It is well known that linear filters are insufficient to deal
with nonlinear time series processing (i.g. predicting,
modeling, and characterizations). On the other hand,
neural networks are useful for nonlinear adaptive sig-
nal processing. They have many important properties
such as nonlinearity built into their structures, input-

Manuscript received July 1, 1997.
Manuscript revised October 1, 1997.
tThe author is with Graduate School of Natural Sci-
ence and Technology, Kanazawa University, Kanazawa-shi,
920-8667 Japan.
" The author is with the Department of Electrical and
Computer Engineering, Faculty of Engineering, Kanazawa
University, Kanazawa-shi, 920—8667 Japan.

output mapping capability, and adaptivity. So, neural
networks have been applied successfully in a variety of
signal and information processing fields. One of these
fields is the nonlinear time series prediction [1]-[8], and
others. Neural networks were first applied to time series
prediction by Lapedes and Farber (1987)[1].

In[1], a multi-layer neural network was used to
predict the real-world data, sunspot time series, with
the encouragable results. The number of the hidden
neurons were estimated based on their own method [1]
and the input dimension discussed in[9] was used to
optimize the network size. Although, the network size
was optimized, the convergence time was very long. The
approach proposed in[4] can provide appreciate con-
vergence speed at the expense of the network size. A
large size, complex numbered multi-layer (two hidden
layers) network with local feedback in its hidden neu-
rons was used. The computer simulations were made
only for a computer generated discrete amplitude time
series. Many types of neural network structures have
been introduced in[3] and it is a good reference for the
time series analysis, prediction, modeling, and charac-
terization.

In practice, many of the time series include both
nonlinear and linear properties. Furthermore, the am-
plitude of the time series is usually continuous. There-
fore, it is useful to use a combined structure of lin-
ear and nonlinear models to deal with such signals.
A combined structures were proposed in[2] and[10]
for different tasks. In[2], a pipelined recurrent neural
network trained by a real-time recurrent learning algo-
rithm and the taped-delay-line filter trained by LMS al-
gorithm was proposed for speech signal prediction. Its
efficiency and capability for the adaptive signal process-
ing were demonstrated by studying the one-step predic-
tion of speech signal [2] and adaptive differential pulse-
code modulation of speech signals[11]. However, the
real-time recurrent learning algorithm has a major lim-
itation. Its computational complexity is very large spe-
cially for a large network size, which is needed for diffi-
cult task. Another hybrid structure of linear filters and
neural network uses radial-basis-function was proposed
in[10] for channel equalization.

In this paper, we propose a cascade form predictor,
which consists of the following sub-predictors [ 12],[13]:
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(1) A nonlinear sub-predictor (NSP), which consists of
a multi-layer (ML) neural network with a nonlinear hid-
den layer and a linear output neuron.

(2) A linear sub-predictor (LSP), which is a conven-
tional finite-impulse-response (FIR) filter.

A nonlinearity analysis method for the time series
is proposed in order to estimate the minimum effec-
tive combination of the input samples and the hidden
neurons. Relation between the network size and the
learning performance will be discussed. Computer sim-
ulation using discrete amplitude time series and the real
sunspot data will be demonstrated.

In this paper, we deal with one-step prediction.
However, the proposed predictor and analysis method
can be applied to more general prediction problems.

2. A Cascade Structure of Neural Network-FIR
Predictor

2.1 Network Structure

Figure 1 shows the proposed predictor structure. The
actual time series contains both linear and nonlinear
properties and its amplitude is usually continuous value.
For these reasons, we combine nonlinear and linear pre-
dictors in a cascade form.

The nonlinear prediction problem can be reduced
to a pattern classification. A set of the past sam-
plesz(n —1),...,z(n — N) is transformed into the out-
put, which is the prediction of the next coming sam-
ple z(n). So, as a first stage of the predictor, we em-
ploy a multi-layer neural network which is good for this
kind of pattern mapping. It is called a nonlinear sub-
predictor (NSP) in this paper. It consists of a sigmoidal
hidden layer and a single linear output neuron. The
NSP is trained by the supervised learning algorithm us-
ing the sample z(n) to be predicted as a target. This
means the NSP itself is trained as a single predictor.

However, it is rather difficult to generate the con-
tinuous amplitude and to predict linear property. So,
we employ a linear predictor after the NSP in order
to compensate for the linear relation between the input
samples and the target. A finite impulse response (FIR)
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T + y(n) y(@o-1) y(@-K)
Error, ( _ T e T
" wiji .
X T B w0 wl N/ WK
x(n-2) \ >,
’}‘ Wi preor Desired
Do
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Nonlinear Sub-Predictor (NSP) Linear Sub-Predictor (LSP)

Fig. 1  Structure of the proposed predictor.
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filter is used for this purpose, which will be called a
Linear Sub-Predictor (LSP). The LSP is trained by us-
ing z(n) as a target. Thus, the same target is used for
both the NSP and the LSP.

In order to confirm the efficiency of the proposed
structure, the modified models, described in Sect. 4, are
used for comparison in computer simulation.

2.2 Network Operation

A set of past N samples of the input signal, z(n —
1),z(n —2),...,2z(n — N) are applied to the NSP and
the current sample, z(n) is used as the desired response
for both the NSP and the LSP. N is the estimated input
dimension.

The reason why we use z(n) as a target for the
NSP is explained as follows: First, it is difficult to ob-
tain the target only for the nonlinear prediction. It may
require separation of nonlinear and linear properties of
the time series. Second, since the NSP has the linear
output neuron, the linear prediction is also possible to
some extent. Thus, the NSP output can approach the
final target z(n).

The LSP is an FIR filter with K taps. The
weights of the sub-predictors are adjusted on a pattern-
by-pattern basis. The NSP trained by the conventional
Back-propagation algorithm, and the LSP is trained by
the LMS algorithm.

2.3 System Equations of NSP

The output of the j th hidden neuron, y,(n) at the nth
time is expressed by

N

uj(n) =Y wyz(n — i) + 0;(n) (1

y;i(n) = fn(u;(n)),

where wj; is the connection weight from the 7 th input
neuron to the jth hidden neuron and 6;(n) is its bias.
The activation function, fj, used in the hidden layer is
a sigmoid function of the form:

1
1+ exp(—x)

i=12,...,L, @)

fu(=) )

The output layer contains only one linear neuron. Its
output value at the nth time can be expressed by:

u(n) = ijyj (n) + 6(n), 4)

y(n) = fo(u(n)) = u(n) ®)

wy is the connection weight from the 7 th hidden neuron
to the output neuron. The error of the output unit at
the nth time is
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ensp(n) = d(n) —y(n) (6)

where d(n) is the desired response at the nth time. In
Fig.1, 2(n) is employed as d(n). The instantaneous
squared error of the network is

1
&(n) = ie%vsp(n) (M
The cost function which has been used as the perfor-
mance measure is the sum of the squared error over an
epoch. It can be written as follows:

M
Ensp = Z &(n), (8)
n=1

where M is the total number of samples in one epoch.
The process of adjusting the weights will be sum-
marized in Appendix A.

3. Nonlinearity Analysis of Time Series

In order to estimate the minimum size of the proposed
predictor, we analyze nonlinearity of the time series of
interest. The prediction is equal to mapping a set of
the past samples to the next sample to be predicted.
The multi-layer neural network is good for this kind
of pattern mapping. Still, difficult mapping can exist,
which includes the following: Several sets of very simi-
lar patterns are mapped into very different samples. The
degree of the difficulty of the mapping is closely related
to the nonlinearity. The necessary number of the past
samples used for prediction, that is the number of the
inputs of the NSP, is determined by this nonlinearity.
The difficult mapping requires a large number of the
past samples. Furthermore, the number of taps of the
LSP is determined by the linearity remained at the NSP
output.

In this section, we introduce a measure to obtain
the effective minimum combination of the input samples
and the hidden neurons which enables the network to
achieve its convergence faster than the other networks.

3.1 Linear Prediction

In order to make nonlinearity of time series clear, linear
prediction is first briefly explained. Let z(n) be a sam-
ple of the time series at the nth sampling point. If the
following relation can be held for any sampling time n,
then z(n) can be predicted using the past N samples.
This is the linear prediction.

N
z(n) = Z a;z(n — i) + ep(n), Q)
1=1
- ep(n) Il Xna |, (10)

Xpo1=[x(n—1),2(n—2),...,z(n—N)* (11)
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where, a; are constants and || . || is Euclidean norm.

In the nonlinear time series, Eq. (9), is not satisfied
using a finite N. In other words, in Eq.(9), the simi-
lar past samples predict the similar output samples. Of
course, the different past samples may predict the sim-
ilar output samples. It depends on the combination of
the samples. However, the similar past samples never
predict the different output samples by Eq.(9). In the
nonlinear time series, the latter case can occur. Al-
though, by increasing the number of the past samples
N, Eq.(9) can be held to some extent, there is some
limitation of network realization.

Thus, in the next section, we propose an analysis
method for the nonlinearity of the time series based on
the variance of z(rn), which corresponds to the similar
sets of past samples {z(n —1),z(n—2),...,z(n — N)}.

3.2 Input-Output Mapping

Impossible Mapping: A set of the N samples X, is
mapped onto the next coming sample z(n) as

X, = z(n), n=12,....M (12)

where M is the total number of mappings in one epoch,
and

X, =[z(n—-1),z(n—2),...,z(n— N)]* (13)

X,, is conceptually called “a set of the past samples.”
Mathematically, it is represented by “a vector.”
We consider two different mappings as

X; = z(%) (14)
X; = z(j) (15)

If the above two different mappings satisfy the following
relation:

then, they can not be realized by the multi-layer neural
network at the same time. If such mappings are exist,
the network will fail to converge at all. This problem
can be overcome by increasing the number of the input
samples V.

Difficult Mapping: In this case, the two patterns are
similar to each other to some extent, and their targets
are different from each other. It can be expressed as:

XimX;,  ai) £ () (17)

Although this mapping is basically possible, it is still a
difficult mapping. Convergence may be possible, how-
ever, it may often take a very long training time. The
key question is how to evaluate the degree of this diffi-
culty. We introduce a nonlinearity analysis method for
this purpose.

In order to measure the similarity among the sets
of the past samples, we employ the Euclidean distance
among them as:
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dij = | X; — X4ll,  iF3 (18)

Similar sets are selected based on d;; using some thresh-
old I. If the Euclidean distance between X; and X;
satisfies

dij <1, (19)

then they are selected as a similar pair. Threshold value,
I is determined by

I =aA, (20)

1 M
Az=M;\w(n>| 1)

A process of selecting sets of X; is as fol-
lows: Let the number of X; sets to be M, that
is,{X1,X5,...,Xm}. One of these sets, X}, is selected
and find the other X, ¢ & k& which satisfies

dpi <1 (22)

X, is selected as the similar member of X;. A set of
these members is denoted by ;. Thus,

Xi € Qy, dis £ 1 (23)

X; ¢ Qk, di; > 1 (24)

1<i<Mandifk

Q. is obtained for all data X7 ~ Xj,.

Next, the difference between (i) and z(j), that is,
lz(2) —x(5)|, is investigated, where both X; and X are
included in the same 2. Let x(7) be the corresponding
output for the input sample set X; € Q. The variance
of z(7) is used to estimate the difference among z (7).

f = é ;mk(z’), Xie (25)
=g D@ —wf,  Xem @6

4

where Q) is the number of elements of Q. Furthermore,
an average of o7 over all Q, is used to estimate the dif-
ficulty of mapping, that is, the degree of nonlinearity of
the entire time series.

1 M
02 = i Z o,% 27)
k=1
3.3 Estimation of Input Dimension of NSP
A large 02 means the similar X; is mapped onto the dif-
ferent z(z), the mapping of this time series is difficult, in

other words nonlinearity is high. On the other hand, if
02 is small, the similar X; are mapped onto the similar
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z(z), then the mapping is easy, and the nonlinearity is
low. L

Although o2 is large for some number of the past
samples IV, used in prediction, o2 can be decreased by
increasing V. Thus, the necessary number of the past
samples, that is the input samples of the NSP is deter-
mined by o2. The threshold I should be appropriately
determined.

There is another nonlinearity. X; and X;, whose
distance | X; — X|| is large, are mapped onto the simi-
lar samples x(i) and z(j), that is ||z(z) — z(j)|| is small.
This problem belongs to pattern classification, which is
an easy problem for the multi-layer neural networks.

4. Comparison with Modified Models

In Sect. 2, we have proposed the cascade form predictor
structure. Some questions may arise about the order of
the combination of the linear and nonlinear processings.
Therefore, some modifications are considered here.

In Fig.2, the LSP is divided into two parts, and the
NSP is sandwiched between them. The same number of
free parameters as in Fig. 1 are used. It will be called
a sandwich model. We also consider another model in
which the LSP and NSP are arranged in the reverse or-
der compared with the proposed predictor in Fig. 1. We
call this model as a reverse order model. The necessity
of using this structure is to answer the question of which
1s better to use LSP or NSP as the first stage.

In the proposed model, we do not use the LSP in
front of the NSP, because the LSP does not work well
for the nonlinear time series. This point will be inves-
tigated through computer simulation.

Figure 3 shows a structure of a multi-layer neural
network with direct linear connections from the input
layer to the output [3, p.28]. Nonlinear hidden neurons
and a linear output neuron are used. It has been stated
that: “... this architecture can extract the linearly pre-
dictable part early in the learning process and free up
the nonlinear resources to be employed where they are
really needed” [3].

We have chosen this architecture for comparison.
Because, this network also try to predict both nonlin-
ear and linear properties using the different structure,
by mixing the linear and nonlinear processings in the
same network. The network size is chosen to have a
very close number of free parameters as that of Figs. 1
and 2.

5. Computer Simulation

5.1 Nonlinear Time Series

Computer simulations have been done for a one-step
ahead prediction task for both computer generated and

real world time series.
o Artificially Generated Time Series:
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Fig. 2 Sandwich structure: The same size as Fig. I, but the LSP is split into two parts

and NSP is sandwiched between them.
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Fig. 3 Multi-layer neural network with direct linear
connections between each input unit and the output
(ML-WDC) [3].

Discrete amplitude signals used in[4], are generated by
the following formula:

P
z(n) = (Z z(n — k)) mod J. (28)

k=1

Two examples of the time series using J = 3, P = 5,
and J = 7, P = 3 respectively are generated. The sam-
ples inside the { } represent one period (one epoch) of
the time series.

Example 1: J =3, P =5:
z(n)=...,{2,0,2,1,1,0,1,2},2,0,2,...
Example 2: J =7, P=3:
z(n)=...,{3,0,4,0,4,1,5,3,2,3,

,4,6,5,1,5,4,3,5,5,6,2,6,
6

76)
6, 1
)67371}73)0) 7 bl EAAE

1,6,3,3,5,4,5,
727072 07 70’1’273767
476727 57

The length of the time series in Examples 1 and 2
are 8 and 48, respectively. Therefore, the nonlinearity
of Example 2 is higher than that of Example 1.
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Fig. 4 Sunspot time series from 1700 to 1979.

e Sunspot Data:

The yearly sunspot time series, shown in Fig. 4, is used
as a benchmark for many years by many researchers. We
have used the record of sunspot data from 1700 to 1920
for learning process and the data from 1921 to 1979 for
testing process. The same data was used in[1] and [9].
In Fig.4, on the horizontal axis, 1 corresponds to the
year 1700 and 280 corresponds to 1979.

5.2 Nonlinearity Analysis

Nonlinearity of the time series are analyzed based on
the average variance 02 using I = A;, 0.8 A; and 0.5A4,.
I, A, and o? are defined by Egs. (20), (21), and (27),
respectively. The values of I are determined by experi-
ence. At the present, we do not have a general rule how
to determine I. However, another important point is
the universality of the value of I. That is, is it possible
to use the same threshold for any nonlinear time series?
We want to confirm this point in this paper.

Tables 1 through 3 show the relations among the
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Table 1  Average variance for Example 1.
No. of Input Samples N | 2 3
I=054, o2 0 0
I=084, a2 0 0
I=A, a2 0.5474 | 0

Table 2  Average variance for Example 2.

Input Samples N | 3 4 5 6
I=05A, o2 | 05127 | 0 0 0
I=08A; o2 | 1.8187 | 1.1399 | 0.0312 | 0
I=A, o2 | 2.9858 | 1.1399 | 1.1615 | 0.3958

Table 3  Average variance for Sunspot example.

Input Samples N | 8 9 10 12
I=05A4, o2 | 0.00002 | 0 0 0
I=08A, o2 | 00014 | 0.00003 | 0.00001 | O
I=A, o2 | 0.0023 | 0.000484 | 0.000064 | O

average variance ;5, the threshold I and the number
of the past samples IV, that is the input samples of the
NSP. By increasing the number of the input samples, o2
can be decreased. o2 = 0 means that all Q; are empty
or {zy; | X; € Qi} take the same value.

5.3 Network Size Estimation

Network size will be estimated based on the nonlin-
earity analysis shown in Tables 1 through 3. For this
purpose, we must know relations among a pair of /
and o2, the convergence speed and the prediction er-
ror. However, these relations are complicated. So, we
first analyze their relations, and then estimate the ap-
propriate threshold I and the variance o2 for both the
convergence speed and the prediction error.

In Tables 2 and 3, if we select I —= 0.5 A, then the
number of the input samples NV = 4 and 9 are enough to
make o2 zero. However, performance of the NSP is not
good. So, we use I = A, for Example | and I = 0.8 4,
for both Examples 2 and 3. Thus, N = 3, 6 and 12 for
Examples 1, 2, and 3, respectively. In simulation, they
are slightly changed in order to confirm the efficiency
of the selected number N.

The next stage is how to determine the number of
the hidden neurons. It will be determined by com-
plexity of pattern classification discussed in[14],[15],
that is the another aspect of nonlinearity described in
Sect. 3.2. The conventional methods can be applied to
this problem. We also want to compare with the other
methods{1],[3],[4]. The number of the hidden neu-
rons is determined from this point. In Examples 1, 2
and 3, (Input-Hidden-Output)=3-2-1, 6-7-1 and 12-8-1,
and their slight modification are employed.

Furthermore, we must estimate the order of the
LSP. For linear prediction, the conventional methods
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can be also applied. However, if we separate a training
and an actual prediction phases, a most important point
is generalization. Even though the error in the training
phase can be well decreased, if the prediction error for
the testing data is drastically increased, this means the
predictor over fits only to the training data. Thus, the
order of the LSP should be determined taking the gen-
eralization into account. This point is also investigated
through computer simulation.

5.4 Learning Curves and Generalization

A. Artificially Generated Time Series:

In Figs. 5, 6, and 7, the vertical axis represents the sum
of squared error over one epoch of the time series and
the horizontal axis represents the time (iterations) in
epochs. Figure 5 shows the learning curves of Example
1, using the proposed predictor of the NSP with 2-3-1
and 3-2-1 in Figs. 5 (a) and (b), respectively. LSP taps
are 6 and 7 in both figures (a) and (b).

In this example, the minimum number of the input
samples is 3 to make 02 = 0 with I = A,. So, the
efficiency of the input samples and hidden neurons has
been investigated. In this figure, the prediction errors
are shown using (1) for the NSP only, (2) and (3) for
the proposed predictor (NSP + LSP) with LSP having
6 and 7 taps, respectively. From these results, we can
confirm the followings:

- 3 input samples can provide faster convergence than
2 input samples even the same network size is used in
both cases.

- Using the LSP provides faster convergence compared
with the case of using only the NSP. The NSP is equiv-
alent to the model proposed in[1].

- The FIR filter with 7 taps is better than that with 6
taps. However, this point should be more investigated
from the viewpoint of generalization, as it will be shown
in the later example.

Figure 6 shows the results of Example 2. In this
case, the minimum number of the input samples is 6 to
make o2 = 0 with = 0.8 A,. Therefore, the NSP with
6-7-1 and 5-8-1 are compared. The difference between
using 5 and 6 input samples is also evident. The other
properties are similar to the first example.

The predictor proposed in[4] can demonstrate
comparable convergence speed for Examples 1 and 2.
However, it requires a multi-layer (two hidden layers)
neural network with the neurons of 3-input, 25-hidden,
25-hidden, and 3-output and a local feedback for each
hidden neuron. The variables of the network are repre-
sented with complex numbers.

B. Sunspot Data:

Simulation results using the sunspot data are shown
in Fig.7. 12 input samples are minimum for 02 = 0
with I = 0.8 A;. 8 hidden neurons are selected based
on a try-and-error method. In this figure, learning
curves using only the NSP and the proposed predic-
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Fig. 5 Example 1: (a) Few input samples and enough hidden
neurons (b) Minimum effective combination of input samples
and hidden neurons.
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Fig. 6 Example 2: (a) Insufficient input samples, the same but
not proper size as (b). (b) Minimum effective combination of
input samples and hidden neurons, proper size network.
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Fig. 7 Sunspot example: Learning curves of the proposed pre-
dictor. NSP consists of 12 inputs, 8 hidden neurons and one
output.
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Table 4 The sum of squared errors for Proposed model with
different LSP taps. The last row, LSP taps=0 means the model
is the NSP only. (The * points to better results at specified LSP
tap).

LSP taps | Learning Phase | Testing Phase
30 0.3726 0.3129
12 0.4163 0.3005
10* 0.4227 0.2962
8 0.4281 0.3098
6 0.4281 0.3104
0 0.4087 0.4476

Table 5 The sum of squared errors for reverse order model with
different LSP taps.

LSP taps | Learning Phase | Testing Phase
12 0.4404 0.5009
10 0.4396 0.5151
8 0.4643 0.4535
6* 0.4787 0.4235
5 0.4893 0.4437

Table 6 Comparison among different models.

Model Name Learning Phase | Testing Phase
ML-WDC model

(12-8-1) 0.5786 0.7152
Sandwich model

LSP(5)+NSP (12-8-1)

+LSP (5) 0.6514 0.4093

The reverse order model

LSP (6)+NSP (12-8-1) 0.4787 0.4235
Proposed model

NSP (12-8-1)+LSP(10) | 0.4227 0.2962

tor (NSP+ LSP) are shown. The FIR filter employs 10,
30, 100 taps for comparison.

Furthermore, the sum of squared errors for the
training data at a stop point (4000 iterations in epochs)
and for testing data are tabulated in Table 4. The test-
ing data is the part of the time series from 1921 to 1979
which was not used in the learning phase. Although
the LSP of large number of taps can decrease the er-
ror in the learning phase, the error for the testing data
is large. This means the learning is over fitting to the
training data. From the viewpoint of generalization and
network size, the LSP with 10 taps is better than the
others.

5.5 Comparison with Conventional and Modified
Models

Table 5 shows the results of the reverse order model in
the learning and testing phases. The LSP with 6 taps
is better than the others. The results of different mod-
els with the specified size are listed in Table 6. The
network size of the proposed and reverse order models
are chosen to give the best performance in the general-
ization. The size of the sandwich model is taken to be
almost equivalent to that of the proposed model. The
ML-WDC size is slightly larger than the other models.
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Prediction output at a stop point

T T T T

T T
e Proposed model Original

08 000 Reverse order model
| xxx Sandwich modef
+++ ML-WDC model

Amplitude

? 4+

) L L . L L
220 230 240 250 260 270 280
Number of samples

Fig. 8 Sunspot example: Prediction of sunspot data from 1921
to 1979.

From Table 6, the proposed predictor can provide the
minimum prediction error in both learning and testing
phases.

Figure 8 shows the output waveforms of the differ-
ent models in the testing phase.

The above results are investigated more. The linear
predictor can not represent the nonlinear property and it
cannot predict also linear property well if nonlinearity
is dominant in the time series. In the sandwich model
and the reverse order model, the first LSP does not work
well. The result of the ML-WDC model demonstrates
that it is rather difficult to separate linearity and nonlin-
earity of the time series in parallel. On the other hand,
the NSP can realize nonlinear mapping. Furthermore
since it uses a linear output neuron, linear prediction
from the hidden layer to the output is also possible to
some extent as shown in curves denoted by (1) in Figs. 5,
6, and 7.

6. Conclusions

A nonlinear predictor connecting the multi-layer neural
network (NSP) and the FIR filter (LSP) in a cascade
form has been proposed. Both the NSP and the LSP
are trained by the supervised learning algorithm using
the same target. A nonlinearity analysis method for the
time series has been also proposed in order to achieve
the fast convergence and the small prediction error with
the minimum network size. Based on the proposed non-
linearity analysis, the minimum number of the past sam-
ples, used in the prediction, can be estimated. The re-
lation among the degree of nonlinearity, the network
size, the convergence speed and the prediction error has
been investigated also through the computer simulations
using the artificial data and the sunspot data. The esti-
mated number of the input samples was very meaning-
ful for the above three factors. The models which uses
a partial LSP in front of the NSP, and the other mix-
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ing linear and nonlinear processing in the muiti-layer
neural network have been compared with the proposed
model. The proposed model has demonstrated its supe-
riority over them in both the learning and testing phases.
It has been also confirmed that the number of taps in
the LSP is sensitive to generalization of the nonlinear
prediction.
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Appendix: A Learning Process in the Cascade Form
Predictor

Forward Path: Transmission of Signal through the Pre-
dictor

Step 1: The past N samples of the input signal, z(n —
1),z(n —2),...,z(n — N) are applied to the NSP and
the current sample, z(n) is used as the desired response.
The network computes the outputs at the hidden nodes
according to Egs. (1), (2), and (3). The output of the
output neuron will be computed using Egs. (4) and (5).
Step 2: We apply the output of the NSP and its past K
values to the LSP as the input which can be expressed
in a vector form as

Y(n) = [y(n)7y(n - 1)7 <o

The coefficients of the LSP can be written in a vector
form as

W = [wo, w1, ..., wk]’ (A-2)
then the LSP computes its output as

yrsp(n) = W'Y (n) (A-3)
Thus, the error of the; LSP is computed by

ersp(n) = d(n) — yrsp(n) (A-4)

Backward Path: Adjustment of the Weights

Step 3: Again we write the error function of the output
unit of the NSP at the nth time and the instantaneous
function of its squared error as:

ensp(n) = d(n) —y(n) (A-5)
£(n) = 5hisp(n) (A-6)

By applying the Back-Propagation (BP) algorithm for
the weights updating, the correction Awj;(n) applied to
wj;(n) is defined by the delta rule

_ . %n)

Awﬁ(n) = —le (A 7)

P6(n) _  8E(n) densp(n) By;(n) dus(n)

Owji(n)  densp(n) Oy;(n) Ou;(n) Ow;i(n)
(A-8)

Aw;(n) and Aw;;(n) can be written as

Aw;(n) = n6(n)y(n) (A-9)
Aw;i(n) = né;(n)y;(n) (A-10)
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The local gradients §(n) and 6;(n) for both output unit
and hidden units, can be written as follows

8(n) = ensp(n)fo(u(n)) = ensp(n) (A-11)

8;(n) = y;(n)(1 — y;(n))ensp(n)w;(n)  (A-12)
Step 4: The LSP coefficients are adjusted according to
the LMS algorithm as

W(n+1)=W(n)+ uY (n)ersp(n) (A-13)

where p is the learning rate parameter of LSP. After up-
dating the NSP weight matrix and the LSP coefficient
vector W, then repeat the above four steps for the next
(n + 1)th time until the end of an epoch.

Step 5: After the end of an epoch, the cost function
for both NSP and LSP are computed as the sum of the
instantaneous squared errors in one epoch.

M
Ensp =Y _£(n), (A-14)
n=1
M1
ELSP = Z iezLSP(n) (A 15)
n=1

where M is the total number of samples in one epoch.
Step 6: Repeat the above five steps until the cost func-
tion of either NSP or LSP reaches some reasonable
value. Then stop the learning.
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