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Abstract

A pair learning algorithm, based on Jutten’s algorithm,
is proposed in this paper. A feedback weight c;;(n) from
the jth output y;(n) to the ith observation x;(n) is up-
dated using only the ith and jth outputs. Then, this
method is called ”Pair Learning Algorithm”. This al-
gorithm is compared with a global learning algorithm,
which use all outputs in updating the feedback weights.
The number of computations is reduced and a learning
process is simplified. Separation performance by both
methods are not so different. Furthermore, the follow-
ing properties are analyzed: Order of the separated sig-
nal sources is dependent on the power ratio of the sig-
nal sources included in the observations. Magnitude of
the separated signal sources are uniquely determined in
the pair learning algorithm after convergence. Squashing
nonlinear functions have effects of stabilizing the learn-
ing process. Simulation using voices, white noise and
music signal are demonstrated.

1 Introduction

Signal processing including noise cancelation, echo can-
celation, equalization of transmission lines, estimation
and restoration of signals have been becoming very im-
portant technology. In some cases, we do not have
enough information about signals and interference. Fur-
thermore, their mixing process and transmission pro-
cesses are not well known in advance. Under these situ-
ations, blind source separation methods using statistical
property of the signal sources have become important
[1)-[5].

Jutten et all proposed a blind separation algorithm
based on statistical independence and symmetrical dis-
tribution of the signal sources [6]-[8]. The learning al-
gorithm is derived assuming approximate convergence.
That is, some of the outputs are expected to be similar
to the signal sources. When some signal source level is
dominant, it is difficult to make the outputs statistically

independent. Under these situations, Jutten’s learning
rule does not work well.

In order to overcome this problem, two stabilization
methods have been proposed [10]. Unstable behavior
caused by corruption of symmetrical distribution and
imbalance of the signal source levels can be overcome.

In this paper, a pair learning algorithm is proposed
for multi-channel blind source separation. Based on the
Jutten’s BSS method, a feedback weight c;; from the jth
output to the ith observation is updated using only the
ith and jth outputs y;(n), y;(n). Then, this method is
called ”Pair Learning Algorithm”. On the other hand,
¢ji is updated using y;(n) and y;(n),j = 1,2,--- ,N in
[12]. These learning methods are compared based on
convergence properties, order and magnitude of the sep-
arated signals. Furthermore, effects of nonlinear func-
tions on convergence is investigated. Computer simula-
tion will be demonstrated using noise, voices and music
signal sources.

2 Jutten’s Blind Separation

2.1 Network Structure
Figure 1 shows a blind separation model proposed by
Jutten et all [6].
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Figure 1: Block diagram of Jutten’s blind separation.

The number of the signal sources, the sensors and



the outputs are all the same. The signal sources
si(n),i = 1,2,--- N are linearly combined using un-
known weights a;;, and are sensed at N points, resulting
in z;(n).

zj(n) = Zafjisi(n) (1)

The output of the separation block yi(n) is given by

N
yj(n) = w;(n) = Y cjryp(n) (2)
)

This relation is expressed using vectors and matrices in
the case of N = 2 as follows:

xz(n) = As(n) (3)
y(n) = =z(n)—Cy(n) (4)
a-[mm] es[m e

A is an unknown mixing matrix. From these expres-
sions, a relation between the signal sources and the sep-
aration outputs becomes

y(n) = (I+C)'z(n)=(I+C) 'As(n) (6)
The following matrix can be regarded as a separation
matrix.

W=(I+C)"! (7)

In order to evaluate separation performance, the follow-
ing matrix is defined.

P=WwA (8)

If P takes the next forms, the signals s; and s; are
completely separated at ether y; or ¥s.

[y 2w (5]

0 poo P21

2.2 Learning Algorithm

Error Function

It is assumed that the separation block approaches the
optimum solution, then N — 1 outputs are already pro-
portional to the signal sources. Only one output has not
reached to the signal source. Let y;(n) be this output.
From Eq.(2),

ui(n) = zi(n) = Y cuyr(n) (10)
k::ll

Here, y, is already aksk(n). Furthermore, x;(n) is re-
placed by Eq.(1).

yl(n) = Z(alk - clkakk)sk(n) + a”sl(n) (11)

k=1

#1

The mean squared y;(n) becomes

Ely; (n)]
N
= ) (ak — ciwar)* Elsi(n)] + aiy B[sf (n)[12)

k=1

1

J =

In the above derivation, si(n) are assumed to be inde-
pendent to each other. Furthermore, it is assumed that
mean of s;(n) is zero, then mean of yi(n) are also zero.
In Ely?(n)], only (ax — cipakk)? can be controlled by
the separation block. It can be zero for ¢ = aix/akk.
Thus, the optimum solution can be obtained employing
Ji as a cost function.
Assumptions of Signal Source Properties
Assumption 1: The signal sources are statistically inde-
pendent to each other.
Assumption 2: Samples of the signal sources are sym-
metrically distributed, that is their probability density
function (pdf) are even.
The update equation is given by

cik(n +1) = cu(n) +1f (yi(1)g(ye (n)) (13)

f() and g() are odd nonlinear functions.

3 Stabilization of Learning Process

3.1 Even Probability Density Function

Reason for Unstable Behavior

Jutten’s algorithm assume the even pdf for s;(n), fur-
thermore, yi(n) are close to s;(n). However, during
early stage of the learning process, these assumptions
are not guaranteed. Although the even pdf can be as-
sumed, it is not valid for a small number of samples.
Large samples easily disturb the even pdf condition.
Stabilization: Method 1

In order to avoid disturbance by large samples, they are
detected and the learning of ¢ (n) is skipped. First,
the variance o}, (n) is estimated using the output sam-
ples. If one of |y(n)| exceeds 1,0y, (n), the learning is
skipped [10].

3.2 Imbalance of Signal Source Powers

Silent Intervals and Power Imbalance

When the signal sources are voices, silent intervals are
included. In this interval, the outputs yx(n) have strong
correlation. The adaptation in this interval causes diver-
gence. This problem will occurs not only in the silent



intervals but also in signal power imbalance. The cross-
correlation between the observations is used for detect-
ing signal power imbalance.

Stabilization: Method 2

Using the cross-correlation pg,,,, the intervals, where
the signal powers are imbalance, are detected. If pg, o, >
Oc, the learning process is skipped [10].

4 Multi-Channel Blind Source Separation

The network of 3-channels is shown in Fig.2.

Figure 2: Block diagram for 3 signal sources, 3 sensors and
3 separations (3-3-3 model).

4.1 Pair Learning Algorithm

As shown in Eq.(13), ¢x(n) is updated using the out-
puts y;(n) and yi(n). This updating process is applied
to the multi-channel environment. This process can be
expressed by

Cn+1) = C(n)+nlfyn)gy" (n))

- A(n)] (14)
C(n) {cij},  ci(n)=0 (15)
y(n) = [y(n),p2(n), - ,yn(m)]"  (16)
fly) = [Hly®),-- fvyn)F (A7)
9@ = lnlnn),- gn(unm)]" (18)
A(n)

= diag[fi(y1(n))g1(y1(n),
“ In(yn(n)gn (yn (n))]  (19)

The number of the feedback connections is N(N —
1).  The number of multiplications used in updat-
ing the N(N — 1) weights is a sum of N(N — 1) for
£ (1)) g5y (n)) and N for 1y (yi(n)), then totally N2
multiplications are required.

4.2 Gloval Learning Algorithm
The update processes for a feedforward network and a
fully recurrent network are given by [11],[12]

Feedforward Network

Wh+1) = W(n)+nn)An)

Fully Recurrent Network

Cn+1) = C(n)+n(n)[C(n)+I][A(n)

S(y(n))y" (n)] (21)

In Eq.(21), for instance, ¢;(n) is updated as,

cik(m+1) = ci(n)+n Z cij(n)bjk(n)  (22)
ci(n) = 1
bie(n) = —¢;(y;(n))yk(n)
bjj(n) = 0 (23)

A(n) can be replaced by I. ¢ (n) is updated using
overall output information, that is yx(n) and y;(n),j =
1,2,--- ,N,# k. However, it has some constraints.
@;(yj(n))yr(n) is weighted with c¢;;(n). This weight-
ing is the same for the elements in the ¢th row of
C(n + 1). The number of the feedback connections is
also N(N —1). N(N —1) multiplications are required for
Y (n) = A(n) — ¢(y(n))yT(n). Furthermore, N3 mul-
tiplications are required for [C(n) + I1Y (n). However,
N3 can be reduced to O(N?) by changing the order of
calculations. Still, this algorithm requires more compu-
tations compared from the pair learning algorithm, while
more information are used for updating the connection
weights.

5 Some Considerations

5.1 Nonlinear Functions

The nonlinear functions, fi(y:(n)), ¢i(yi(n)), ¢i(yi(n)),
are odd functions due to the assumption of the even
pdf for the signal sources. Still, there are many selec-
tions for the odd nonlinear functions. In this paper,
squashing and non-squashing functions are compared.
As described in Sec.3, the assumption of the even pdf is
easily broken by large samples in an early learning stage.
Squashing functions compress large amplitude samples,
so stabilization effects can be expected. Also, a combi-
nation of the nonlinear functions must be optimized.

5.2 Order of Separated Signal Sources

Generally speaking, there is no information to determine
the order of the separated signal sources. The order
means the output terminals, where the signal sources are
separated. However, it is highly dependent on dominant



components in the outputs in the early learning stage. In
the pair learning algorithm, based on Jutten’s algorithm,
if the feedback weights are initially zero, then the output
yj(n) are equal to the observation x;(n). Letting z;(n)
be a linear combination of the signal sources, they are
related as

zj(n) =

N
Z ajisi(n) (24)

yi(n) = zj(n) (25)

If the signal sources s;1(n) and s;2(n) are dominant in
yj1(n) and y;2(n), respectively, the correction terms for
the feedback weights cj1 2 and cjz ;1 are mainly de-
termined by the dominant components. They are ad-
justed so as to extract s;1(n) and s;2(n) in y;1(n) and
yj2(n), respectively. In other words, s;1(n) and s;2(n)
in y;1(n) and y;j2(n) suppress the same components in
the other outputs, like competitive learning. Thus, the
signal sources will remain at the outputs where they oc-
cupy dominant at the beginning of the learning process.

The global learning algorithms have the same prop-
erty as in Eq.(25), if the connection weight matrix W (n)
is initially set to the identity matrix I in the forward
type, and ¢;,(0) = 0 in the fully recurrent type.

5.3 Silence of Signal Sources

Another aspect regarding the order of the separated sig-
nal sources is silence of the signal sources. When some
of the signal sources are silence in some intervals, what
happen in the order of separation? Suppose s;(n) is sep-
arated at yx(n), and s;(n) becomes zero in some interval,
which signal source is separated at yx(n)? Since s;(n) is
separated at yx(n), it can be expressed by

yr(n) = si(n) + si(n) (26)

5i(n) is the cross term of the other signal sources,
which is well reduced after convergence. For instance,
their ratio is about 20~30 dB in practical applica-
tions. Thus, when s;(n) = 0, yx(n) become small value,
and the correction term given by fi(yx(n))gi(y)) and
fi(yi(n)) gk (yk (n)) become also small values. This means
updating the weights cx(n) and ¢ (n) are very slow.
yr(n) can stay at a small value for a while. Of course,
if s;(n) is silent for a very long period, another signal
source will appear. However, this situation is easily re-
paired when s;(n) comes back, that is s;(n) can easily
occupy yr(n).

In the pair learning algorithm, the same signal source
can be separated at the different outputs. Let s;1(n) be
separated at yx1(n), and consider s;1(n) is also separated
at yr2(n). The feedback weights cx1 k2(n) and cka g1(n)
are not updated due to the stabilization using the cross-
correlation between xy1(n) and xi2(n), in which s;1(n)

is dominant. However, the other feedback weights cy1 5
and cg 1 are updated, where z # k2.

5.4 Magnitude of Separated Signal Sources
There is no information about power of the signal
sources. After convergence, the connection weights sat-
isfy the following situations. Let s;1(n) be separated
at yr1(n), then s;1(n) appears at the observation z;(n)
are cancelled by s;1(n) in yg1(n). This cancellation is
expressed as,

cjr(n)agin = ajn (27)
o
ca(n) = L (28)

As described in Sec.2.2, the cost function of Jutten’s
algorithm can guarantee the above feedback weights af-
ter successful convergence. Therefore, even though we
cannot estimate in advance, magnitude of the separated
signal sources are uniquely determined as,

Separated s;1(n) = a;1,515:1(n) (29)

On the other hand, in the global learning methods,
there is no constraint on magnitude of separated signals
11,12,

6 Simulation and Discussions

6.1 Simulation Conditions
Nonlinear Functions

Case-1
) = v, el =y (30)
ily) = o (31)
Case-2
1—e % 1—e™¥
fz(y) = m, gz(y):m (32)
1—e 5
b2(y) = = (33)

Learning Rate

The learning rate is n = 0.005 for SNR< 20dB, and
0.001 for SNR> 20dB in both methods. SNR is defined
by using P in Eq.(8)

2
Dijeou Pij

SNR = 10log
Ei,jeQz pzzj

(34)

pij are elements of P. ) includes the elements of the
separated signal sources, and {25 includes the elements
of the cross terms.



Mixing Matrix

SNR is always 2 dB for both methods and all cases of
the number of channels. The definition of SNR for the
mixing matrices is the same as in Eq.(34).

1.0 0.5

Aen = | 0.5 1.0 (35)
(1.0 0.7 0.3

Az = 04 1.0 05 (36)
0.8 0.5 1.0

1.0 0.3 05 0.3
0.5 1.0 0.6 0.3
04 05 1.0 04
0.5 05 0.3 1.0

1.0 03 04 03 05
04 1.0 02 05 03
Ase, = | 03 04 1.0 03 03 (38)
03 04 06 1.0 03
| 03 05 03 03 1.0

Signal Sources

2-channels: music

3-channels: two voices and one white noise
4-channels: three voices and one white noise
5-channels: four voices and one white noise

6.2 Separation Performances

Voices and White Noise Sources

Figure 3 shows the learning curves of the pair learning
algorithm using the Case-2 nonlinear functions and the
stabilization with the cross-correlation. The vertical and
horizontal axes indicate SNR dB and the number of it-
erations, respectively. Since the squashing functions are
used, the stabilization for large output samples is not
necessary. Figure 4 shows the results without the stabi-
lization based on the cross-correlation among the obser-
vations. The results are almost the same for 3-channel
case. However, in the cases of 4- and 5-channels, the
cross-correlation stabilization is effective. The difference
is not so much. From these results, it is confirmed that
the squashing nonlinear functions are useful for stabiliz-
ing the learning process.

Figure 5 shows the learning curves for the global
learning algorithm using the Case-2 nonlinear function.
No stabilization is required. This approach can provide
higher SNR for 4-channel case, while the results in 3-
and 5-channels are almost the same as in Figs.3 and 4.

2-Channels and Music Signal Sources

Figures 6 and 7 compare the pair and the global algo-
rithms using 2-channel music signal sources. The Case-1
and Case-2 nonlinear functions are used in Figs.6 and
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Figure 3: Learning curves of pair learning using Case-2
nonlinear functions and stabilization with cross-
correration.
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Figure 4: Learning curves of pair learning using Case-2
nonlinear functions. Stabilization with cross-
correlation is not used.
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Figure 5: Learning curves of global learning using Case-2
nonlinear functions.



7, respectively. In Fig.6, both the stabilization meth-
ods described in Sec.3 are used. Since the number of
channels is two, there is no essential difference between
the pair and the global learning algorithms. The dif-
ference is rather caused by the nonlinear functions and
the stabilization methods. As a result, a combination
of non-squashing functions and the stabilization meth-
ods is useful for the music signal sources. However, this
point should be more investigated.

SNR [dB]

Pair Learning
° Global Learning———

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Iterations

Figure 6: Learning curves of pair and global learning al-
gorithms using Case-1 nonlinear functions. 2-
channel music signal sources are used.

SNR [dB]

Pair Learning
Global Learning———

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Iterations

Figure 7: Learning curves of pair and global learning al-
gorithms using Case-2 nonlinear functions. 2-
channel music signal sources are used.

7 Conclutions

For multi-channel blind signal source separation, a pair
learning algorithm has been proposed. This algorithm is
a simplified version of the global learning algorithm. The
number of computations can be reduced, and a learn-
ing process is also simplified. Separation performances
are almost the same as the global methods. Further-
more, nonlinear functions are compared using squash-
ing and non-squashing functions. The squashing non-
linear functions have effects of stabilizing the learning

process. However, efficiency is dependent on nature of
signal sources. For instance, in the case of music signal
sources, a combination of non-squashing functions and
the stabilization methods is useful. This point should
be more investigated.
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