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ABSTRACT An associative memory using fixed and variable hysteresis thresh-
olds, = T and =+ T(n), in learning and recalling processes, respectively, has
been proposed by authors. This model can achieve a large memory capacity and
very low noise sensitivity. However, a relation between weight change A w and
the hysteresis threshold + T has not been well discussed. In this paper, a new
learning algorithm is proposed, which is based on an error-correcting method.
However, in order to avoid unstable behavior, double hysteresis thresholds are
introduced. Unit states are updated using = T. The error is evaluated using *+
(T+dT) instead of + T. This means 'over correction'. Stable and fast convergence
can be obtained. Relations between 75 =dT/T and convergence rate and noise
sensitivity are discussed, resulting the optimum selection for »n. Furthermore,
the order of presenting training data is optimized taking correlation into
account. In the recalling process, a controlling method for + T(n) is proposed
in order to achieve fast recalling from noisy patterns. Memory capacity is
investigated, which is about 1.6 times the the number of units.

I INTRODUCTION

An associative memory is one of hopeful applications of artificial neural net-
works (NNs). Connection weights are adjusted so that patterns are memorized on
equilibrium states. Conventional methods, auto-correlation methods and
orthogonal methods [1]-[6], assume symmetrical weights, and are effective only
for lineally independent patterns or orthogonal patterns. Therefore, memory
capacity and noise insensitivity are strictly limited.

Authors proposed an associative memory, and its learning and recalling
algorithms [7]-[9]. Fixed and variable hysteresis thresholds were effectively
employed in the learning and recalling processes, respectively. It can
drastically improve recalling ability from noisy pattens. However, a relation
between connection weight change and the threshold was not well discussed. It
was determined by experience. Furthermore, control of the variable hysteresis
threshold in the recalling process was not optimized.

In this paper, new learning and recalling algorithms are proposed in order to
solve the above remaining problems, and to achieve fast convergence, low noise
sensitivity and large memory capacity.

I ASSOCIATIVE MEMORY WITH HYSTERESIS THRESHOLD

The associative memory proposed in [7]-[9] is briefly described here. A unit is
connected with all the other units. The weights are not always symmetrical. A
self-loop is not used. Let the input and output for the ith unit at the nth cycle
be u;(n) and v;(n), respectively. The connection weight from the ith unit to the
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jth unit is expressed w;;. Network transition is formulated as follows:

N
us(n) = 21 Wwi3vi(n), wyi=0 (1)
1, u;(n)=T(n) (2a)
vi(n+l) = f(us(n)) = {vj(n), | us(n) | <T(n) (2b)
0, u;s(n)<-T(n) (2¢)

II LEARNING ALGORITHM FOR CONNECTION WEIGHTS

3.1 Error-Correction with Double Hysteresis Threshold

The propdsed learning algorithm is based on an error-correcting method [10].
However, the ordinary error correcting method is very poor in training the
mutually connected NNs. This means the learning process is very unstable and
oscillation easily occurs. Therefore, in order to prevent such unstable behav-
ior and to achieve fast convergence, double hysteresis threshold is
introduced. The learning algorithm is described in the following step by step.

Let P(m), m=1~M, be patterns to be memorized. p;(m) expresses the ith element
of P(m), which takes a binary value, that is 1 or 0.
(1) Initial connection weights are set to zero.
(2) The network state is set to one of the patterns P(m).
(3) Calculate the unit input by Eq.(1). p:«(m) is used instead of vi(n).

N
u;(n) = El wis(n)p(m), pi(m)=1or 0 (3)

(4) Letting + T be the hysteresis thresholds, the error is evaluated by

e 5(n) = py(M)[T-u;(n)] + (1-ps(m))[T+u;(n)] (4)
(5) If | us;(n) | cannot exceed T, then & ;(n)>0. Thus, & ;(n)<0 means the output
is correct, that is v;(n+1)=p;(m). Therefore, the weights are updated by

wis(n+l) = wes(n) + x (n)6 s(n)pi(m)S[ e 5(n)] (5)

8 3(n) = py(m)[T+dT-u;(n)] + (pi(m)-1)[T+dT+u,(n)] (6)

S[e 5(n)] ={ 1, &5(n)>0 (7)
0, £s(n)=0

g (m = po/(M(m)-1), 0< g o=1, (8)

M(m) is the number of the units locate on P(m).

In the above equation, T+dT is used instead of T. dT serves as the hysteresis
margin. A pair of T and dT is called "double hysteresis thresholds" in this paper.
This method makes it possible to stabilize and accelerate the learning process.
In the later section, we will compare the learning behavior with dT and without
dT through computer simulation. A ratio of dT and T is denoted 75 =dT/T.

(6) The connection weights are simultaneously updated for a pattern P(m).
(7) By replacing P(m) by P(m+1), the above processes (2) through (6) are repeated.

Furthermore, Steps (2) through (7) are repeated until all unit inputs satisfy

If pi(m) =1, then u(n)=T (9a)
If pi(m) =0, then u;(n)<-T (9b)

3.2 Relation between dT/T and Convergence Rates

dT is used to stabilize the learning process. If patterns P(i) and P(j) are
conflict with each other, then adjusting of the connection weights for P(i) are
easily broken by learning P(j) some other time. This cause oscillation, that is
unstable learning and slow convergence. In order to avoid this unstable
phenomena, dT is introduced. However, if it is small, effect of dT is not
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sufficient. A large dT is desired to guarantee stable and fast convergence.

3.3 Relation between dT/T and Noise Sensitivity

Noise sensitivity is determined by the variance of connection weights. An exam-

ple is shown here. Two sets of weights are considered here.

v, =1(1,1,1,1,1], W==1[2,1,1,0.5,0.5]
Sums of the weights are the same, that is 5. Suppose the unit state will change
if its input change more than 2.5. Using W,, three units should be changed at
least. Let the number of units in the whole network be N. When the noise is
added at random, a probability of selecting one unit is given by 1/N. Selection
of three units from five units has probability p,; given by Eq.(10a). At the same
time, using Wz, probability of changing more than 2.5 is pz given by Eq.(10b). :

p: = 9(1/N)* (10a)

p== (1/N)® (10b)
Usually, N takes a large number (>>9), then p; is smaller than p=.

On the other hand, variance of Wz is larger than that of W,. Thus, the noise
sensitivity is proportional to the variance of the connection weights. The
variance is highly dependent on 5 =dT/T. A large 5 will cause a large variance.
Therefore, a small 5 is desirable to achieve robustness for noisy patterns.
This direction for » is opposite to stable and fast convergence. Therefore, »
should be optimized taking both the convergence rate and the noise sensitivity
into account. This will be further discussed in Sec.V.

3.4 Order of Presenting Training Patterns

In the mutually connected NNs, connections from common units for many pat-
terns to the other units are not emphasized. On the contrary, connections from
the units, not included in many patterns, to the other units are emphasized,
and play an important role in the recalling process. In other words, patterns
having high correlation with the other patterns are difficult to be memorized,
and to be recalled from noisy patterns.

In the learning process given by Eqgs.(5) through (8), the connection weights
are adjusted so that the unit inputs just satisfy the threshold pattern by
pattern. This adjusting affects the patterns early presented in both positive
and negative directions. This negative affection will be readjusted in the next
learning. The positive affection will remain. By repeating this learning, the
early presented patterns can gain noise margin.

Taking the above discussions into account, highly correlated patterns are
early presented to the NN. By this method, noise sensitivity is averaged over
all patterns. The correlation is evaluated by Hamming distance as follows:

M
du(i,j) = T | pr(i) - px(J) | (11)

K=1

l M
dH(i) ‘-"ﬁ' pX dH(ivj) (12)
J=-1
IV RECALLING FROM INCOMPLETE PATTERNS
4.1 Variable Hysteresis Threshold
After the training completed, all units satisfy Egs.(9a) and (9b). By adding
noise, these conditions are destroyed, and the network changes its state. State
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changes are transferred through connections to the other units, and cause
another state transition. The wrong state change tend to cause another wrong
state changes. As a result, the NN fails in recalling the correct memory.
Therefore, it is important to select the units, whose input are probably
correct, and to change these units first.

For this purpose, we proposed variable hysteresis threshold + T(n) in the
association process [7T]-[9]. Let ei(n) be an error added to the ith unit. It takes
+ 1. In the noisy pattern, the unit input is expressed using e;(n) as follows:

us(n) = Ew”[p;(m)+e:(n)] = Ew”px(m) + Zerx(n) (13)

The first term 1s the correct component satisfles Eq.(9). The second term is the
error component. If the following condition is held, inaccurate transition is
caused. The first and second terms are denoted U;(n) and E;(n), respectively.
~p3(m)=1: Us(n)<-T(n), ps(m)=0: Us(n)>T(n) (14)
If we assume for p;(m)=1 and 0, U;(n) takes T and -T, respectively, the above
conditions can be rewritten as,
ps(m)=1: E;(n)<-T-T(n), py(m)=0: T+T(n)<E;(n) (15)
E;(n) is uniformly distributed. The probability of Eq.(15) can be decreased by
setting T(n) to much larger than T. Finally, T(n) should approach to T. This is
an idea behind the variable hysteresis threshold [7]-[9].
T(n) is chosen to be large enough to T, and is gradually decreased toward T.
In the previous work, T(n) was determined by
T(n) = T(0) - an, a : constant (16)
T(0) is chosen to larger than T. T(0) and a are also determined by experience.

4.2 Optimum Control of Variable Hysteresis Threshold
In this paper, an improved version of controlling T(n) is proposed. The
method is described in the following step by step.
(1) The first threshold is determined by
T(0) = max { | ui(0) |} (17)

1
u(0) is the input of the ith unit at the initial state. The operation | x|

means absolute value of x.
(2) The units, whose input satisfy

| ue(0) | = T(0) (18)
are updated following Egs.(1) and (2). + T(0) are used until the network state
does not change any more.
(3) The next threshold T(1) is determined in the same way as Eq.(17).

T(1) = max { | ui(n) |} (19)

i
The same processes in Step(2) are repeated.
Thus, after the network reaches to some sate, the maximum input is adopted as
the next threshold. Finally, T(n) can reach T.

V SIMULATION RESULTS
5.1 Convergence Properties
A mutually connected NN, having 8x8=64 units, is used. Training data are gen-
erated as random patterns. Half of the units take 1, and the other units take 0.
Hamming distances among patterns form normal distribution with mean of 32 and
covers from 22 to 44. The learning coefficient x o in Eq.(8) is unity.
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Figure 1 shows relation 2000 T I T I
between the number of patterns
memorized (horizontal axis) and 1500 - ity ] i
the number of iterations i ;
(vertical axis). Adjusting g / ® o
connection weights using one set § 1000 (- dr/r=0(son).,f Farm=0 a1 [,
of patterns is counted as one = [ !
iteration. dT/T=0 means the ‘ i % !
ordinary error-correcting method 0 1= ,,C 0 I/ -
[10]. The graph with a symbol & . +.+‘Jg-®" [ 2 drm=1
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patterns presented is always 0 20 40 60 80 100
fixed. The other graph with a Number of patierns
symbol + means that the order is Fig.1 Relations between the number of
randomized at each iteration. patterns, which can be memorized, and
dT/T=0.1 and 1 indicate the the number of iterations in learning.

proposed method.

From these results, the error-correcting method without dT is very poor for
training mutual connected NNs. Patterns more than 45(+) and 60(<) cannot be
memorized due to unstable behavior. On the contrary, the proposed method is
very efficient. As discussed in Sec.3.2, a large 75 =dT/T can provide fast
convergence. Memory capacity can be also increased.

5.2 Memory Capacity

The memory capacity is dependent on correlation among the patterns. In this
paper, random patterns are used. The results of Fig.l1 are used for this
discussion. The number of iterations gradually increases up to about 80
patterns. After that, it quickly increases. This is a very peculiar phenomenon.
The training converged until 100 patterns. The number of the patterns could be
increased a little more. However, from the very sharp slope, it is almost limited
near by 100 patterns. Thus, the memory capacity is about 100/64=1.56 times as
large as N. This result is much higher than the other models.

5.3 Recalling Accuracy for Noisy Patterns

Noisy patterns are generated by adding random error. Units are randomly se-
lected, and their state are reversed. Thirty sets of random numbers are used. As-
sociation rates are evaluated in average. Figure 2 shows the simulation results.
These results also support the previous discussion given in Sec.3.3. Association
rates are inversely proportional to 5 =dT/T. Roughly speaking, around 7 =0.2 is
desirable for both convergence speed and recalling accuracy.

5.4 Improvement of Association Rates

Effects of the order of presenting the training data, and the control method
of the hysteresis threshold are investigated. Since random patterns have almost
the same correlation, alphabet patterns, are employed for this purpose. The
patterns are expressed with 16x16=256 dots. The network has also 256 units.

Table 1 lists association rates for noisy alphabet patterns. Method A is the
original one [8], B improves the hysteresis threshold control, C orders the
training patterns based on correlation, and BC combines Methods B and C.
Association rate X is of the original pattens, that is 'correct answer', Y is of
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untrained patterns, that is spurious, and Z is of the other training patterns.
The recalling accuracy form noisy patterns can be improved by 3~5% from the
original version. The ordering of the training patterns is more efficient.

100 J r ' 20 patterns| Table 1 Association rates for
M alphabet patterns with random
€ g0  TTTtheesieo__ mise15%|  noise.
g \"‘A‘z‘o'% (8) 7 =0.1, Noise=15%
‘é 60 noise 2% Methods | Association rates
g e e N X Y Z
8 40| T et T A 96.3 2.8 0.9 %
5 noise 25% B 96.4 2.6 1.0
20 fr I et . o 97.1 2.2 0.7
. \ , noise 30% BC 97.1 2.3 0.6
0 0.5 1 L5 2 (b) 7 =0.1, Noise=20%
drr Methods | Association rates
100 ! ' ! 40 patterns| X Y zZ
—~——— A 87.1 8.7 4.2 %
8 80} noise 5%_ B 88.1 7.7 4.2
g ‘\"---\f\-w\_,_\_\/\\ o 89.1 7.5 3.4
£ 60 |- Ty BC 89.5 7.1 3.3
5 a0 .. _ (c) n =0.1, Noise=25%
2 T TN e L Methods | Association rates
< 20 noise 15%- X Y Z
...................................................................... _ A 71.7 17.5 10.8%
0 L 1 1 _noise 0% B 73.3 17.1 9.7
0 0.5 d'}‘/I‘ 15 2 C 76.6 13.9 9.5
BC 76.8 14.6 8.6

Fig.2 Relations between association rates and
dT/T. (a) 20 and (b) 40 patterns are memorized.

VI CONCLUSIONS

The error-correcting method using the double hysteresis thresholds has been
proposed for the associative memory. Stable and fast learning can be achieved.
Large memory capacity is obtained. The proposed ordering the training patterns
and the controlling the hysteresis threshold can further improve association
rates for noisy patterns.
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