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SUMMARY

In data communication systems, a Nyquist
waveform shaping filter is an important ele-
ment. The Nyquist filter not only restricts
the bandwidth of the data signal, but also
realizes zero intersymbol interference where
the time response intersects zero at equal
intervals except at one point. This paper
discusses a design method of a digital Ny-
quist waveform shaping filter for sampled
signals. 1In particular, the method proposes
realization of overall zero intersymbol in-
terference when an identical transfer func-
tion is used for both the transmitter and
receiver filters. In this method, the trans-
fer function coefficients are used as approx-
imate variables. They are divided into co-
efficient T, for time response approximation

and xf that approximates the frequency re-

sponse. The condition for zero intersymbol
interference is given as the linear equation

for x,. Therefore, the approximation vari-

able x, for realization of zero intersymbol

t
interference is obtained from solution of
the linear equation. On the other hand, the
frequency response is optimized with the
iterative approximation due to the observa-
tion that the relation between xf and the

approximation function is nonlinear. The
proposed method is applicable to both the
FIR filter and the IIR filter for which the
conventional method is not applicable. Fur-
ther, the effect of the quantization errors
in the multiplier coefficients and in the
internal signal on the intersymbol interfer-
ence is analyzed, and an estimation formula
is obtained.

1. Introduction

In-data communication, the Nyquist wave-
form shaping filter (hereafter referred to
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as Nyquist filter) is important [l, 2]. This
filter realizes zero intersymbol interference
for which the time response crosses zero at
equal intervals except at one point. This
filter also restricts the data signal band-
width. With recent advances in digital elec-
tronics, digital Nyquist filter development
has also been studied [3 ~5]. Several design
methods have been proposed to realize zero
intersymbol interference for both the FIR
(Finite Impulse Response) filter and the IIR
(Infinite Impulse Response) filter [3, 6, 7].

On the other hand, in data communica-
tion systems, transmitter filters are used
for limiting the transmitted data bandwidth,
and receiver filters are used for removing
the unwanted wave components generated by
channel noise and demodulation. There are
two ways pertinent to designing Nyquist fil-
ters: either the transmitter filter or the
receiver filter is fixed and the other is
used for waveform shaping; both filters are
used for waveform shaping. For the latter,
CCITT recommended a method using identical
filters for both the transmitter and receiver
filters in systems such as 4800 bps modems
[8]. In this paper, the design method is
described for these cascaded Nyquist filters.

There are several design methods re-
ported for cascaded Nyquist filters realizing
zero intersymbol interference in FIR filters
[9, 10]. However, no extensive reports have
been made on IIR filters. This paper de-
scribes a design method valid for both FIR
and IIR filters for realizing zero intersym-
bol interference [11].

2. Linear Equations for Zero Intersymbol
Interference in Cascaded Nyquist Filters
2.1 FIR filter

In general, the transfer function of
the FIR filter is given by
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H(z)=n§ohnz n , z=e) /f,, (1)

where fé is the sampling frequency. 1In the
discussions below, fg = 1 Hz except in sec-

tion 5. Let the cascaded form H2(z) of H(z)
be

2N
N*(z)= % Atz 2)
n=0
Then h; is expressed as the autocorrelation

of h_:
n

n-m &)

If K designates the sampling point at which
the time response is maximum, the equally
spaced zero crossing condition except at one
point in h; is

h;.‘.i‘,:O, 1 =% 1., + 2, A (4&)

M=f/2fy . linteger (4b)

where fw is the Nyquist frequency [1]. This

paper treats only the case where M is an in-
teger. The condition in Eq. (4) becomes in
general a simultaneous quadratic equation
system for hn' However, it is possible to

transform Eq. (4) into linear equation sys-
tem by assuming a sub-set of the coefficient
set {hn} as the variable and the remainder

as constants. For the existence of this sub-
set of coefficients, the following lemma
holds:

Lemma 1.
h:#O,n¢K+iM, t =1, +2 (5)
When the sub-set of the coefficients for

transforming Eq. (4) into linear equations
is mt,

(1) ((K)),, = 0 or ((2W-K)), =0  (6)

mt does not exist

(2) (®)),, +0and ((2N-K)), +0 (7)

(1) M=2 x, does not exist

(1i) M =3

(a) ((K))M = 1 and ((2N-K))M =1

X = even number xt exists
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K = odd number xt does not

exist for an
arbitrary N

(b) ((K)),, # 1 or ((21V-K))M#1
9)

.xt exists.

(i11) 4SM x, exists

t

where (( ))M is the residual operation with

modulus M. A proof of Lemma 1 is given in
Appendix 1.

2.2 TIIR filter

Let H(z) be the transfer function for
an IIR filter. Then the necessary and suf-
ficient condition for its impulse response
to cross zero at equal intervals, except at
one point, becomes available [7]. Hence, in
this paper, the zero intersymbol interfer-
ence condition 1is formulated so that the
transfer function H2(z) for the cascaded
transmitter and receiver satisfies this con-
dition. Considering the necessary and suf-
ficient condition given in [7], H(z) 1is ex-
pressed in direct form as follows:

Nn
Y oa,z"
n=0 :
H(z)= s (10)
1+ ¥ b,z

n=1

Further, let

2N,
Yarz"
P ()=— an
z)= 2N,
1+ £ 4y 2z7"
n=1
Then
* i3 ‘l
ap = mZ_J ¢, e, . (12a)
. n—1
by =% bpbppm » 1=n (12b)

The condition for zero intersymbol interfer-
ence for the impulse response for a filter
with the transfer function H2(z) is

ek-in =0, i=1, 2, - (13a)
ok 70 (13b)

a/?+m=¢}$b¢* y =1, 2, . (13c)



From Eq. (12), Eq. (13) becomes, in general,
a simultaneous fourth-order equation system
for a, and bn' In a manner similar to the

FIR filter, it is possible to select a sub-

set of the coefficients xt that transforms

the equations to a linear system. For this
process, the following lemma holds:
Lemma 2.

(1) X + 2N M < 2Nn

For N

N and . = a , Lemma 1 holds.
n n n
(2) K + 20gM2 20,

For N = N, and hy = ay, Lemma 1 holds.
Where the conditions ((ZN-K))M #0 in (1),
(21V-.K))M # 0, ((ZIV-K))M = 1 and ((2V - :
K))M # 1 in (2) in Lemma 1 can be removed. ;
An 'abridged proof is given in Appendix 3.

3. Approximation Method
3.1 Algorithm

As described in the previous section, l
the approximation for the time response is
carried out through solving linear equations
with the appropriate approximation variable
T, Hence, the method proposed in [12] is

basically applicable as a simultaneous ap-
proximation in the frequency and time domains.
The approximate algorithm proposed in this
paper is summarized in the following.

(1) Since, in general, the relation be-
tween the frequency response and the approxi-
mation variable xp is nonlinear, the fre-
quency response is approximated through the
iterative Chebyshev approximation method
[13].

(2) The time domain approximation 1s to
obtain xt through solving the linear equations
with constants zf obtained at each step of

the iterative approximation described above.
By evaluating the frequency response with &
and x, obtained above, the condition for
zero intersymbol interference is always sa-
tisfied in the frequency response approxima-
tion process.

The process in (2) can be expressed
mathematically as follows. First, the trans-
fer function H(2) can be expressed in general

with xt and xf as

H(Z, Xy xf) (ll’)
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If we let the linear equation with variable
x
t
Ax, =c (15)
then the elements of the matrix 4 and the
vector ¢ are made of the elements of x..

f
From Eq. (15), let

]

x,=A""¢c (16)

Then, the transfer fuﬁction of Eq. (l4) can
be expressed with an approximation variable
x, only as in

f
H(z, A ¢, xf) (17)

Therefore, use of the function form (17)
automatically satisfies the condition for
zero intersymbol interference.

3.2 Flow chart

Figure 1 shows an approximation flow
chart.

(1) Estimate initial guess for H(z, x,,

x
f)

This paper uses a method for approxi-
mating the ideal response in the time domain.
This 1is because the calculation is compli-
cated in the frequency domain where amplitude
and phase must be approximated.

Let the transfer function Hi(z) have an

amplitude response interpolated with a cosine
function in the transition band and a linear
phase response:

|7, (e/*)| =1,

1 (l)—(l)l
=—2— 1+cosn{—]t, 0, <w<w,

W, —w,

ISw=o, (18a)

=0, w, SwsT (18c)
Further, the rolloff rate is defined by
o= (w,—w )/ 4Ar fy (19)

If the impulse response for the filter with

the transfer function H.(z) is 2; , this
1s an ideal impulse response for the filter
with the transfer function H(z). For the
approximation of the initial value, the con-
ventional time domain approximation methods
can be used [14].

(2) Iterative Chebyshev approximation

The approximation problem in the fre-
quency domain can be formulated as follows:

R - n TATEL e e



[Initial guess of filter order |
T

1

[Choice approximation variables: Xt, Xf ]

Formulate linear equations to accomplish
zero 1SI @ A¥;=C

|
[ Initial guess of H(z, Xt, Xf) |

—_————— e —
\

| ity

\Iterative Chebyshev approximation.

Solve linear programming with Xr‘r'” as constant to
minimize maximum deviation in(r-1)th step : X!’

[ Solve linear equations : X{F'= A"'C l

Evaluate deviations in frequency domain

Yes

Is maximum deviation decreosedﬁ

|
|
|
|
|
|
|
|
|
; using |H (ed% , xtt"), x£(r ) |
|
|
L

_————— e - == ———— NO pap—

<Is specification in frequency dornain satisfied

¥ No

L {Increase filter order |

Fig. 1. Approximation flow chart.

Minimize § in

n(e’®, A7¢, x;)
n(e’’, A7 e, x;)

<8, my,=w=m (20)

The local linear programming with the
first derivative is used for obtaining :cfl")

minimizing the maximum deviation at the
(r-1)-th step [13]. In this case, x, is

treated as a constant in terms of xér'l)

obtained in the (r -1)-th step. The fre-
quency response at the r-th step can be
evaluated from the transfer function

I( z, xiﬂ, x(fr)) using m}.r') and xt(;l") obtained

through solvin% the linear equations with
coefficients xtI’) .

Since the denominator coefficient of
the transfer function is contained in :z:t,

the denominator function expression in the
iterative approximation is arbitrary.
Therefore, by the expression of the product
of the first- or second-order factors in
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the denominator function, an iterative ap-
proximation is always possible while stabil-
ity is checked.

4. Analysis of Intersymbol Interference
Due to Quantization Error

In the actual operation of the digital
filter, quantization errors are generated in
the coefficients and the internal operations.
An equation is derived that estimates the
intersymbol interference caused by the quan-
tization errors. The direct form is chosen
as the H(z) circuit configuration.

4.1 Intersymbol interference due to
quantization errors in the coef-
ficient

Let
G(z)=H*(z) (21)

and H(z) is expressed as

H(z)=P(z)/Q(z) (22)



where P(z) and Q(z) are polynomials in z-l.
It is assumed that errors AG(z), AP(z), and
AQ(z) are generated in G(z), P(z), and Q(z)
due to quantizing the coefficients of P(z)
and Q(z):

P(z)-l-é’]’(z))2
YRRy (23)

G 4G(z)=
(2)+46(2) (Q<z)+AQ<z)

In the region where the quantization error

of the coefficients is sufficiently small,

AG(z) in Eq. (23) can be expressed approxi-
mately by

)
(24)

AGz‘-'——-
()Q(z

Intersymbol interference due to quantization
of the coefficients is defined as

oo 1/2
ISI(Q°) e { 2_70 d¢t o n } /91( (25a)
(@W ng""o
ttn M=K, 0=SisM-1] (25b)

Here, g, and bg, are the impulse responses

for filters with transfer functions G(z) and
AG(z). Next, AG(z) is broken down to the
following parallel configuration of the func-
tions with low sampling frequency:

: M1
AG(z)=.Z° 27t 4G, (M) (26)
i=

Since in Eq. (24), auto-correlations for the
coefficients of AP(z) and AQ(z) are consid-
ered in general to be very small, thelr amp-
litude responses become flat [15]. Hence,
the AG(z) amplitude response can be deter-
mined by H(z)/Q(2) and G(z)/Q(2). These are
almost zero at

M r/MSwsn (27)

from the band-limiting condition of the Ny-
quist filter. Since AG(z) also has the band-
limiting response, the following relation
holds [16]:

) 1
4G. (eM?)|=— |dG (e’ ISw s—-
| 4G, (e®)| MI (e’)], m
(28)

On the other hand, Parseval's relation holds
between the impulse response Agi-an of the

filter with transfer function AGi(zM) and

the latter itself [17]. Based on these fac-
tors,
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dgtun = —"I —146(e’*)|Pdo  (29)

n=o Mz

From Egs. (25) and (29)

1 1 . 1/2
ISl(Qc)={71— . E—fﬂldG(e}(v)lzdw} /91(

(30)

Since the coefficient distributions of AP(3z)
and AQ(z) are considered unrelated to each
other, we obtain

|4G(e’®)|?
ATt OEETY
Q(e’” Q(e’?)
(31)

where Ac = 2-tc and tc is the number of bits

below the decimal point. From Eqs. (30) and
(31),

ol L 2e) |
ISI(Q )—{M ; 2nj—x[(N“+1)|Q(eJ"")
G(e"“’) 2 1/2
__,'w) ]dw} (32)

where the following relation is used:

In Eq. (32) the amplitude responses for H(z)
and G(z) are determined only by the rolloff
rate and are considered fixed for a given
rolloff rate. Hence, the parameters to de-
termine ISI(QF) are orders Nn and Nd for the

transfer functions and the denominator func-
tion Q(z).

In the case of FIR filters, let Q(z) =1
and Nd = 0 in Eq. (32). Further, consider-

ing

1 ‘ I
—_— 1(e!?) | dws=s —
2nf_u|1(e Pdos— (34)

we obtain a simple estimation equation

N, +1
I1S1(Q°) = /-——"3 4, (35)

4.2 Intersymbol interference due to
quantization of internal signals

The quantization error in the internal

b %R N GG AR T A"
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Fig. 3. Impulse response: h;;
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signals, or the intersymbol interference

ISI(Qd) caused by rounding off any error

generated after multiplication can be ob-
tained in a manner similar to ISI(QC) as

follows:

1ST(Q4) = {m 2. L [" (s, 6(er)]?
12 21 % ¢
+(N,+1+S7%N,) |11 (e’?)|?

1/2
+(Nn+1)]dw} (36)

Scaling factor S is given by

S =mjn {lQ(e’®)]) 37)

5. Design Examples

Design example 1.

Circuit structure FIR filter
Sampling frequency 4 Hz
)
Nyq%;st frequency 0.5 Hz, M = fé/
W 2f, =4
Rolloff rate (p) 507
Order (Nn) 23rd

Considering Lemma 1, waveform center K
was chosen at 21. Further, under the condi-
tions in Eq. (5) the approximation variable

xt that transforms the zero intersymbol in-

terference condition to the linear equation
and the approximation variable mf made of

remaining coefficients are chosen as

x¢=(/h» hyy hgy hgy hiosy hiay hiey Py
}‘18) I"Zl)

xf"“("(n hyy hey hsy hey hgy Ay, hizs
hisy higs hias bz, haz s hzs)

Figure 2(a) shows the frequency response for

H(z) and Fig. 2(b) shows the impulse response
hn. Figure 3 shows the impulse response h:

corresponding to H2(z).

From Fig. 3, it was found that zero
intersymbol interference is realized in the
impulse response h:. Although the passband

amplitude response and the group delay char-
acteristic are obtained as a result of time
domain approximation, they are close to

ideal responses. Figure 4 shows the ISI(Q°)

[ST(Q°)[%]
507 vo
N Estimation —-—-
1 \\ |Simulation o
4 \\
\
\
1.0 AN
E oY
0.5 \
1 \
| \
\
O\
a \
\
\
\
0.1 \
; o
0.051 \
4 6 8 10 [bif]

Effective word lengths

Fig. 4. Estimation and simulation for

ISI(°).

vs. the coefficient word length. Here, the
effective word length is the number of bits
below the decimal point, when the maximum
value of the coefficient is normalized to
unity. The dotted line is obtained from the
estimation equation (35) whereas o's are
found by an actual simulation. The results
confirm that the estimation equation (35) is
effective.

Design example 2.

Circuit structure IIR filter

15 L
H(z)= % a,z"/(1+5,27*), z=gl 2"/t
n=0
(38)
Other conditions are identical to those for

Design example 1. The approximate variables

xt and xf are chosen as follows:

x¢=(a,, @3, Qs Q7 Gy, als)
Xy = (ao, Qyy @4y Qgy Ggy 219y Cuy 125 214

Q159 bl)
Design results are shown in Figs. 5 to 7.

Although the impulse response h: in Fig.

6 is somewhat asymmetric, the zero intersym-
bol interference condition is satisfied. The
stopband attenuations in Fig. 2(a) and Fig.
5(a) are almost equal. It is clear that the
desired frequency response is realized with
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Fig. 7.

1SI(Q°) (%]
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an IIR transfer function of lower order than
an FIR structure.

6. Conclusions

A method is reported for designing a

cascaded Nyquist filter with zero intersym-
bol interference, particularly when the same
transfer function is used in both the trans-

mitter and receiver.

The proposed method is

applicable to both IIR and FIR filters.
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1. Proof of Lemma 1
(1) From Eq. (6)
hog=0 or Ay=0
From this,

Al =0 or Ay, =0

APPENDIX

(AL)

(A2)

Hence, the condition (5) is not satisfied.

(2) - (1) From Eq. (7), for M = 2,

((K))M=l and ((ZN""K ))M=l

(a3)

holds. Further, considering Eq. (4) and

hg#0 and AjyF0 (A4)
we have
h,=0, n=K—-:iM, i=1, 2, -, [51
" M
=N+1—iM,i=1,2,~u[E£:£]
M
(A5)

where for a real R, [R] is the maximum inte-

ger not exceeding R. On the other hand

. K
}"K = Z /lu II‘K—n
n=0
From Eq. (AS) for an odd N, only if
K=N
we have
ﬁ; = ﬁ-o II-N =# 0
However, in this case from Eq. (AS5)

h;:tl =0

’

(46)

(A7)

(A8)

(49)

holds, and the condition in Eq. (5) is not
satisfied. For other X and even W, h; be-

comes zero from Eq. (A5) and the condition
in Eq. (5) is not satisfied. From the above,

xt does not exist for M = 2,

(2) - (44)

Four sub-sets are defined here.

{hn}lz This consists of hl and hN

being uniquely zero when
(), = 1 and ((2V -K)),

-1

=1
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{hn}zz This consists of hn values that

are not mutually related via pro-

d i .
uct in the expressions of hK+¢M

(2 =0,%1, *2, ...), however,
{h,} is not contained.

{hn}B: This consists of hK/2

from h; # 0 for even K.

obtained

{h_}: The sum of {hn}l, {hn}2 and
{hn}S.
(a) Each sub-set can be set as follows:

(hody=Chyy byy ) ]

(hads = Choy hsy "([l]_1>3)

3

r (A10)
{hy)s =(hgsa)y, K=even

= empty, K = odd

{hn}Z in Eq. (Al0) is not unique, but the
maximum number of elements in {hn}Z is [N/3].
If the number of elements in {Zn} is J?E{jzl}),
then from Eq. (Al0)

J"({Tu}]=[—j':—]+3, K=even]

=[—Z—]+2, K=odd[ (All)

On the other hand, the number of equations in
Eq. (4a) is

2
H(EQ)=—T—
3
Therefore, a sufficient condition for select-

ing the elements of {hn} for z, is

(A12)

AR I=N(EQ) (A13)

For N satisfying Eq. (8) the equality of Eq.
(A13) holds for X = even. There exists an N
for which Eq. (Al3) is not satisfied for odd
K (e.g., M=3, K=7,N=17).

(b) For an odd K, each sub-set is set as
follows. First the condition in Eq. (9) is
divided into Eqs. (Al4) and (Al5):

(KNy=1 or ((2N=-K)y=1 (Al4)
((K))M?El and (( 2N—K))M?E] (AIS)

Individual sub-sets are



(/?-n}l = (4,
{/"u}z =

or Ay, ), empty

hoy Ay, oo
(hos ko A (A16)

{h,}s = empty

The first and second terms in {hn}l in Eq.

(Al6) correspond to Eqs. (Al4) and (Al5).
Then the number of elements in {hn} and the

number of equations in Eq. (4a) are
~ N N
A b P)={—|*+2, |—//—|t1 (1D
3 3
2N-3

2N—4
H(EQ)= ’

Al8
3 3 (A18)

For N satisfying Eq. (9), Eq. (Al3) holds.
Since for X = even hK/Z can be added to the

elements of {ﬁn}, the condition in Eq. (Al3)

can also be satisfied.

(2) - (111)

Individual sub-sets are chosen as fol-
lows:

[hn}l = (I;” ﬁN-x)
where, ((K))M=1’ (( ZN_.K))M=1
{hn}z =(/‘01 hypy oy h N )
[T]M

{An)s = Chgra), K : even, = empty, K ' odd
(A19)

The general formulas for the number of ele-
ments in {hn} and the number of equations in

Eq. (4a) can be given for each combination
of N, M, and XK. Although not all are de-
scribed here, it can easily be shown that
each one satisfies the condition in Eq.
(Al13). (End of proof.)

2., Examples for xt Selection
in an FIR Filter
An example is shown here for N =11, M =

4, and X = 9. The conditions for Egqs. (4)
and (5) are given by

At =2hohy =0 (A20a)
he =2(hohs+ hihy+hyhy) =0 (A20Db)

13 =2(hshy+hyhig+hihg+hshg+hghy) =0

(A20c)
A7 =2(hghy + hihig+ hghy) =0 (A20d)
h3 = 2ﬂxo by =0 (A20e)

A} #0, 0S,=<22and j#9+4d, £8, +12
(A21)

From Eqs. (A20a), (A20e), and (A21), hl =
th = 0 and they become the elements of {hn}l;
{hn}z consists of coefficients not included

in the same product in the expressions of Eq.
(A20) and h;. For instance, it is possible

to choose
{hn}2=(/1‘0! hay hyy hiy), (hyy ks, ke, hy)
(A22)

Since X is odd, {hn}3 becomes empty; x, can be

constructed from three elements selected from
{hn}l in addition to {hn}Z' For instance,

xt=(ho; hyy hyy hq, hio)y (hyy hyy hgy hes hxo)
(A23)

Difficulty in choosing &, is determined by M

t
as discussed in Lemma 1 and is independent
from the order of the filter; z, choice is

always possible for an M larger than 4. How-
ever, further study is needed in regard to
choosing T, effective for amplitude response

approximation.

3. Abridged Proof of Lemma 2

Since b%(i =1, 2, ..

Eq. (13c), it is not possible to select the

denominator coefficients as the mt elements.

If the numerator coefficients an and Nn are

. Nd) is used in

regarded as hn and N in Lemma 1, the subse-

quent proof can easily be derived from that
of Lemma 1. However, if Eq. (l3c) is consid-
ered, the condition for ((ZN-K))M can be

removed under the condition of (2).
(End of proof.)




