
Parallel Simulation of FIR Adaptive Filters

on nVIDIA GeForce Graphics Processing Unit

Akihiro HIRANO Kenji NAKAYAMA

Kanazawa University

Abstract This paper discusses a fast execution of
multiple simulations for an FIR adaptive filter on
nVIDIA GeForce family GPU with an easy program-
ming. For simplicity, only one shader processor per filter
is used. In order to overcome a long latency of off-chip
memory access, multi-word memory accesses, software-
based data caches, and address assignment in the same
order as the memory accesses are introduced. Dedicated
functions for memory accesses hide the complicated code
for acceleration from programmers. The performance
comparisons shows that GeForce 8800 GPU is almost
four times faster than Core 2 CPU. Even the Atom/ION
platform is almost as fast as Core 2 CPU.

1 Introduction

Echo cancellers are used to reduce echoes in a wide
range of applications, such as teleconference systems
and hands-free telephones. For acoustic echo cancellers
(AEC’s), the number of taps is very large; from sev-
eral hundreds to several thousands. Therefore, efficient
implementation of AEC’s has been studied[1], [2]. In re-
search of AEC’s, optimization of adaptation parameters
requires multiple simulations. Thousands of simulations
for ensemble averaging might be necessary in order to
confirm a convergence analysis[3]. Parallel simulations
might be useful for these cases.

Recent years, PC-based communication systems such
as Skype and Messenger becomes very popular. PC-
based systems are also useful for simulations because
they have powerful CPU’s over giga floating-point opera-
tions per second (FLOPS) performance. Recent PC’s are
also equipped with powerful graphics processing units
(GPU’s). These GPU’s are also capable of numerical
computations by using C/C++ language[4]–[6] and have
been used for computer simulations. Latest GPU’s have
computation performance over tera FLOPS. Even some
low-cost chipsets consist of programmable GPU’s. An
example is ION platform by nVIDIA for Intel Atom pro-
cessor.

In order to exploit the performance of GPU’s for signal
processing, computationally efficient implementations of
adaptive filters on GPU’s have been reported[2], [7].
Adaptive filters on GPU’s outperforms those on CPU’s
especially for a multiple simulation case[7]. However,
a source code of an efficient program for GPU’s might
become complicated: it should support multi-thread ex-
ecution, tree adders, and vector load/store operations.
Such a complicated programming might be a barrier for
GPU computing.

This paper discusses a fast execution of multiple sim-
ulations for an FIR adaptive filter on nVIDIA GeForce
family GPU with an easy programming. Section 2 de-
scribes the FIR adaptive filter with the normalized least
mean squares (NLMS) algorithm[8]. GeForce family
GPU and “CUDA” software development environment
are briefly described in Sec. 3. The proposed imple-
mentation is shown by Sec. 4. Section 5 compares the
performance.

2 FIR Adaptive Filter Based on NLMS Algo-

rithm

The adaptive FIR filter generates its output signal
y(n) from the input signal x(n) and the filter coefficient
wk(n) by

y(n) = w
T (n)x(n) (1)

x(n) = [x(n) x(n − 1) · · · x(n − N + 1)]T (2)

w(n) = [w0(n) w1(n) · · · wN−1(n)]T , (3)

where N is the number of taps, [· · ·]T is a transpose of
a vector [· · ·]. The error signal e(n) between the desired
signal d(n) and the filter output y(n) is calculated by

e(n) = d(n) − y(n). (4)

By using the NLMS algorithm[8], the filter coefficient
vector w(n) is updated by

w(n + 1) = w(n) +
µe(n)x(n)

|x(n)|2
(5)

where a positive constant µ is a step-size parameter.

3 nVIDIA GeForce GPU and CUDA

In this implementation, nVIDIA GeForce 8000 fam-
ily[9] or later GPU’s are assumed. Though GeForce 8800
GTS and GeForce 9400M in ION chipset are used as a
benchmark platform, the results could be applied for
other GPU’s. Exceptions might be latest Fermi family
GPU’s[10]; they are equipped with L1 and L2 data cache
memories and therefore, different optimization could be
applied. Main features of GeForce 8000 or 9000 family
GPU’s are listed below.

• Unified shader architecture

• Large number of shader processors (SP’s):

– 16 ∼ 128 SP’s per chip.

– 8 SP’s execute the same instruction.

第25回信号処理シンポジウム 2010年11月24日～26日(奈良)

- 98 -

Constant Memory (64KB)

Multiprocessor #N

Shared Memory (16~32KB)

Shader
Processor
(SP) #8

Shader
Processor
(SP) #1

Registers Registers

Instruction
Unit

Multiprocessor #1

Host CPU

GeForce GPU

Memory I/F

Device Memory
(MB~GB)

Memory I/F

Device Memory
(MB~GB)

Figure 1: Computation model of GeForce GPU

– The same instruction are executed in four
successive instruction cycles.

– 32 threads are executed simultaneously by 8-
SP block.

– 8192 data registers per 8 SP’s.

• Floating-Point (FP) support

– 32-bit FP multiply-add.

– Four-clock latency for 32-bit FP multiply-
add.

– Some newer GPU’s support 64-bit FP.

• Multiple data memories

– Shared memory: 16KB or 32KB read/write
RAM per 8 SP’s.
Access latency is 4 instruction cycles.

– Constant memory: 64KB read-only RAM per
chip.

– Device memory (off-chip RAM): ∼ 1GB.
Very slow: Latency is 400 ∼ 600 clocks.

• Compiler support

As a programmable processor, GeForce GPU’s can
be regarded as multiple sets of 8-way SIMD (single-
instruction multiple-data) processor array. In order to
cover a four-cycle latency for most operations, each SP
repeats a single instruction by four times. Therefore,
a set of 32 threads is executed by a set of 8 SP’s. A
synchronization mechanism is prepared between threads

in a SIMD processor array, while there are no synchro-
nization mechanisms between different SIMD processor
arrays.

There are some classes for data memories on GeForce
GPU’s: shared memory, constant memory, texture mem-
ory and device memory. 8 SP’s in the same group can
access shared memory. Though shared memory is the
fastest memory, special care is required for its lifetime.
Shared memory is prepared at the beginning of thread
and is removed at the end. Users have to save data which
will be used after the end of thread into device memory
(off-chip memory).

Device memory is a large off-chip memory. The prob-
lem of device memory is a very long access latency which
is 400 ∼ 600 instruction cycles. To hide this latency,
multiple groups of threads are commonly used; another
thread starts when a thread is interlocked by slow mem-
ory access. Constant memory is an intermediate-speed
memory. From GPU, constant memory is a read-only
memory, while host CPU can read/write this memory.

“CUDA”[4], [5] is a software development tools and
drivers for GeForce family GPU’s, which is an abbrevi-
ation of “Compute Unified Device Architecture.” Pro-
grams for both CPU and GPU can be written in a single
source file. Some extensions to C/C++ language sup-
port parallel processing and multiple memory classes.

4 Implementation of FIR Adaptive Filters

Based on NLMS Algorithm

In this implementation, only one SP per filter is used
for simplicity. This implementation focuses on

1. Multi-word access[2] and cache

2. Address assignment in the same order as memory
access

3. Memory assignment

4. Multiple simlations.

In order to hide a complex program code for 1 and 2,
memory accesses for the filter coefficients and the input
signals x(n) are performed via specified functions.

4.1 Multi-word access and cache

The number of memory read operations from the slow
device memory can be reduced by reading multiple data
simultaneously. Using four-word load/store operations,
twice faster computation speed than that for a scalar
program can be achieved[7]. The drawback of this tech-
nique is a complicated programming for both vector op-
erations on a scalar processor and data accesses avoiding
the misalignment problem[11].

In this implementation, a simple cache mechanism
using the fast shared memory is introduced. For sim-
ple programming, the multi-word memory access and
the cache operations are hidden in load/store functions.
Only one cache entry for the filter coefficients and also
one for the input signals are prepared. For LMS-family

- 99 -

Thread 0: 0-3 4-7 8-11 12-15

Thread 1:

Thread 2:

Thread 3:

12-158-114-70-3

0-3 4-7 8-11 12-15

0-3 4-7 8-11 12-15

(a) Simple assignment

0-3 0-3 0-3 0-3

4-7 4-7 4-7 4-7

8-11 8-11 8-11 8-11

12-15 12-15 12-15 12-15

Thread 0

Thread 1

Thread 2

Thread 3

(b) Same order as memory access

Figure 2: Address assignments

adaptive filters, single-entry cache memories achieves
hight cache-hit rate because of their simple sequential
memory access. The effect os the cache size will be ex-
amined later.

4.2 Address assignment in same order as

memory access

The number of memory access operations can further
be reduced by changing the data address assignments for
the filter coefficients wi(n) and the delay line x(n − i).
The data addresses are assigned in the same order as
the memory accesses. For multiple simulations of the
same-order adaptive FIR filters, such assignment is sim-
ply achieved by gathering data with the same index i for
multiple threads into successive data address. Excep-
tions would be sparse-tap adaptive FIR filters[12], [13]
in which the order of memory access depends both on
the input signals and also on the adaptation parameters.

Figure 2 (a) shows a simple address assignment. In
this figure, “0-3” means w0(n) through w3(n) for the
filter coefficients, or, x(n) through x(n − 3) for the de-
lay line. Data for each thread is stored in a memory
block, followed by data for the next block. In this man-
ner, multiple data transfers should be required only for
one-word data, e.g. w0(n). This is because multiple
threads are simultaneously executed in a SIMD array.
Accesses for multiple w0(n), one per thread, will occur
at a time. Since these data might be stored in separate
data address, a large number of data transfers should be
required.

Such multiple memory access operations can be gath-
ered by changing the data address based on the access
order. An address assignment for a four-word access

tx = ...; /* Thread Index */

dp = ...; /* Delay Pointer */

cp = ...; /* Coefficient Pointer */

out = 0;

for (tap = 0; tap < TAPNUM;

dp--, cp--, tap++) {

/* Read coefficient */

c = ReadCoef(tx, coef, cp);

/* Update coefficient */

c += delta * in;

/* Read new input */

in = ReadDelay(tx, delay, dp);

/* Convolution */

out += c * in;

/* Store coefficient */

StoreCoef(tx, coef, cp, c);

}

Figure 3: Example of source code for LMS adaptive filter

and four-thread case is demonstrated by Fig. 2 (b).
Four threads will request data access for their w0(n)
through w3(n), which result in sixteen-word access in
total. These sixteen-word data are stored into succes-
sive data address. Therefore, a smaller number of block
transfer might sufficient compared with assignment in
Fig. 2 (a).

4.3 Memory assignment

Since the number of taps is assumed to be very large,
vectors x(n) and w(n) will be stored in the device mem-
ory. It distinguishes this implementation from that re-
ported in [2]. The input signals and the desired inputs,
which are not modified by GPU, are stored into constant
memory.

4.4 Code example

Figure 3 is an example of implemented source program
for (1) and (5) of LMS-family algorithms. This program
calculates

wk(n) = wk(n − 1)

+ δ(n − 1)x(n − k − 1) (6)

and

sum(n) = sum(n) + wk(n)x(n − k) (7)

in the descending order of the tap index k. In (6) ,
δ(n − 1) is defined by

δ(n − 1) =
µe(n − 1)

|x(n)|2
. (8)

- 100 -

Table 1: Specifications of Platforms

Platform Server Nettop
CPU Core 2 Duo E8200 Atom N330

Physical cores 2 2
Logical cores 2 4
CPU clock 2.66GHz 1.6GHz

GPU GeForce 8800 GTS GeForce 9400M
(ION chipset)

SPs 8 × 16 8 × 2
SP clock 1.62GHz 1.1GHz

OS Linux Linux
(bits) (64bit) (64bit)

Table 2: Computation time per filter for multple GPU
programs

Type Simple With cache Cache + assign
Time [sec] 5.830 2.927 1.152

Table 3: Optimum computation time per filter for 4096-
tap, 10 seconds data

Type Core 2 GeForce 8800 Atom ION
Time [sec] 2.370 0.584 5.664 2.655

The number of memory access can be reduced by data re-
use[1], [2]. In order to hide the complicated code for ac-
celeration from programmers, memory accesses are per-
formed by dedicated functions.

5 Performance Comparison

The FIR adaptive filter with NLMS algorithm has
been implemented and tested on two different platforms.
Table 1 depicts the specifications of the platforms. For
both CPU’s and GPU’s, programs in C language is used.
The CPU program has been optimized by the compiler.
For the GPU programs, the tunable parameters such as
the number of thread and the cache size have been man-
ually optimized for the speed.

An 4096-tap FIR adaptive filter and a 16kHz sampling
are assumed, which is applicable 250msec reverberation
time. Simulations for multiple FIR adaptive filters with
different step-size have been performed simultaneously.
All filters uses the same input signals. The processing
time per filter for 10-second data have been compared.

The effects of the optimizing techniques are compared
by Tab. 2. 512 simulations have been carried out simul-
taneously by using 64 threads × eight SIMD arrays. The
cache size is eight-word for GPU program with multi-
word access and cache (With cache), while four-word is
used for program with both cache and address assign-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1 10 100

Ti
m

e
pe

r F
ilt

er
 [m

se
c]

Cache size [word]

With cache

Cache + assign

Figure 4: Computation time vs. cache size

 100

 1000

 10000

 100000

 1 10 100 1000 10000

Ti
m

e
pe

r F
ilt

er
 [m

se
c]

Number of Threads

GeForce

Core 2

ION

Atom

Figure 5: Computation time vs. number of filters

ment(Cache + assign). The cache enhances the speed
by almost two times. Further three times improvements
has been achieved by the address assignment optimiza-
tion.

The influence of the cache size is depicted by Fig. 4.
512 simulations have been carried out simultaneously by
using 32 threads × sixteen SIMD arrays. The optimum
cache size for most configurations is four words. Though
eight-word cache is better for some configurations, the
difference between the four-word cache and the eight-
word cache is small.

Table 3 compares processing time per filter for differ-
ent platforms. The fastest parameters have been man-
ually selected. The GPU programs use multi-word ac-
cess, cache and address assignment. In both platforms,
GPU’s are faster than the corresponding CPU’s: almost
four times faster for GeForce 8800 GPU. The Atom/ION
platform is almost as fast as Core 2 CPU.

Figure 5 compares processing time per filter for differ-
ent paramters. The results of GPU’s are plotted for mul-
tiple combination of the tunable parameters: the num-
ber of SIMD arrays, the number of threads per SIMD
array, and the cache size. Though the performance of
GPU program depends on tunable parameters, the total

- 101 -

number of threads is the most important factor.

6 Conclusion

A fast execution of multiple simulations for an FIR
adaptive filter on nVIDIA GeForce family GPU with
an easy programming has been discussed. Multi-word
memory accesses, software-based data caches, and ad-
dress assignment in the same order as the memory ac-
cesses overcome a long latency of off-chip memory access.
In order to hide the complicated code for acceleration
from programmers, memory accesses are performed by
dedicated functions. A simple user program achieves al-
most four times faster simulations by GeForce 8800 GPU
than Core 2 CPU.

References

[1] A. Hirano and K. Nakayama, “Implementation of
stereophonic acoustic echo canceller on intel IA-32
processors with SIMD capability,” Proc. of 22nd

SIP symposium, Nov. 2007.

[2] A. Hirano and K. Nakayama, “Implementation
of stereophonic acoustic echo canceller on nvidia
geforce graphics processing unit,” Proc. of ISPACS

2009, pp. 303–306, Dec. 2009.

[3] S. Koike, “Performance analysis of least mean
modulus-newton algorithm,” Proc. of ISPACS

2009, pp. 413–414, Dec. 2009.

[4] “NVIDIA CUDA compute unified device architec-
ture reference manual,” Nov. 2008.

[5] “NVIDIA CUDA programming guide,” Dec. 2008.

[6] “ATI stream computing user guide,” Mar 2009.

[7] A. Hirano and K. Nakayama, “Implementation
of large-scale fir adaptive filters on nvidia geforce
graphics processing unit,” to be presented at IS-

PACS 2010, Dec. 2010.

[8] J. Nagumo and A. Noda, “A learning method for
system identification,” IEEE Trans. AC, vol. 12,
no. 3, pp. 282–287, Mar. 1967.

[9] “NVIDIA FeForce 8800 GPU architecture
overview,” Nov. 2006.

[10] “Tuning CUDA applications for Fermi,” Apr. 2010.

[11] B. Juurlink A. Shahbahrami and S. Vassiliadis,
“Performance impact of misaligned accesses in
SIMD extensions,” Proc. of ProRISC 2006, pp.
334–342, 2006.

[12] S. Kawamura and M. Hatori, “A tap selection al-
gorithm for adaptive filters,” Proc. of ICASSP ’86,
pp. 2979–2982, 1986.

[13] S. Ikeda and A. Sugiyama, “A fast convergence
algorithm for sparse-tap adaptive fir filters for an
unknown number of multiple echoes,” Proc. of

ICASSP ’94, pp. 41–44, 1994.

- 102 -

